Spaces:
Running
on
Zero
Running
on
Zero
# import spaces | |
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from accelerate import Accelerator | |
import os | |
import time | |
from torchvision import transforms | |
from safetensors.torch import load_file | |
from networks import lora_flux | |
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux | |
import logging | |
from huggingface_hub import login | |
from huggingface_hub import hf_hub_download | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Set up logger | |
logger = logging.getLogger(__name__) | |
logging.basicConfig(level=logging.DEBUG) | |
accelerator = Accelerator(mixed_precision='bf16', device_placement=True) | |
# hf_token = os.getenv("HF_TOKEN") | |
# login(token=hf_token) | |
# # Model paths dynamically retrieved using selected model | |
# model_paths = { | |
# 'Wood Sculpture': { | |
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything", | |
# 'BASE_FILE': "flux_merge_lora/flux_merge_4f_wood-fp16.safetensors", | |
# 'LORA_REPO': "showlab/makeanything", | |
# 'LORA_FILE': "recraft/recraft_4f_wood_sculpture.safetensors", | |
# "Frame": 4 | |
# }, | |
# 'LEGO': { | |
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything", | |
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_lego-fp16.safetensors", | |
# 'LORA_REPO': "showlab/makeanything", | |
# 'LORA_FILE': "recraft/recraft_9f_lego.safetensors", | |
# "Frame": 9 | |
# }, | |
# 'Sketch': { | |
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything", | |
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_portrait-fp16.safetensors", | |
# 'LORA_REPO': "showlab/makeanything", | |
# 'LORA_FILE': "recraft/recraft_9f_sketch.safetensors", | |
# "Frame": 9 | |
# }, | |
# 'Portrait': { | |
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything", | |
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_sketch-fp16.safetensors", | |
# 'LORA_REPO': "showlab/makeanything", | |
# 'LORA_FILE': "recraft/recraft_9f_portrait.safetensors", | |
# "Frame": 9 | |
# } | |
# } | |
# # Common paths | |
# clip_repo_id = "comfyanonymous/flux_text_encoders" | |
# t5xxl_file = "t5xxl_fp16.safetensors" | |
# clip_l_file = "clip_l.safetensors" | |
# ae_repo_id = "black-forest-labs/FLUX.1-dev" | |
# ae_file = "ae.safetensors" | |
model_paths = { | |
'Wood Sculpture': { | |
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_4f_wood_sculpture-fp8_e4m3fn.safetensors", | |
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_4f_wood_sculpture.safetensors", | |
'Frame': 4 | |
}, | |
'LEGO': { | |
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_lego-fp8_e4m3fn.safetensors", | |
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_lego.safetensors", | |
'Frame': 9 | |
}, | |
'Sketch': { | |
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_sketch-fp8_e4m3fn.safetensors", | |
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_sketch.safetensors", | |
'Frame': 9 | |
}, | |
'Portrait': { | |
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_portrait-fp8_e4m3fn.safetensors", | |
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_portrait.safetensors", | |
'Frame': 9 | |
} | |
} | |
CLIP_L_PATH = "/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/clip_l.safetensors" | |
T5XXL_PATH = "/tiamat-NAS/songyiren/FYP/liucheng/ComfyUI/models/clip/t5xxl_fp16.safetensors" | |
AE_PATH = "/tiamat-vePFS/share_data/storage/huggingface/models/black-forest-labs/FLUX.1-dev/ae.safetensors" | |
# Model placeholders | |
model = None | |
clip_l = None | |
t5xxl = None | |
ae = None | |
lora_model = None | |
# Function to load a file from Hugging Face Hub | |
def download_file(repo_id, file_name): | |
return hf_hub_download(repo_id=repo_id, filename=file_name) | |
# Load model function with dynamic paths based on the selected model | |
def load_target_model(selected_model): | |
global model, clip_l, t5xxl, ae, lora_model | |
model_path = model_paths[selected_model] | |
BASE_FLUX_CHECKPOINT = model_path['BASE_FLUX_CHECKPOINT'] | |
LORA_WEIGHTS_PATH = model_path['LORA_WEIGHTS_PATH'] | |
logger.info("Loading models...") | |
try: | |
if model is None is None or clip_l is None or t5xxl is None or ae is None: | |
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False) | |
clip_l.eval() | |
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False) | |
t5xxl.eval() | |
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False) | |
logger.info("Models loaded successfully.") | |
# Load models | |
_, model = flux_utils.load_flow_model( | |
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False | |
) | |
# Load LoRA weights | |
multiplier = 1.0 | |
weights_sd = load_file(LORA_WEIGHTS_PATH) | |
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True) | |
lora_model.apply_to([clip_l, t5xxl], model) | |
info = lora_model.load_state_dict(weights_sd, strict=True) | |
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}") | |
lora_model.eval() | |
logger.info("Models loaded successfully.") | |
return "Models loaded successfully. Using Recraft: {}".format(selected_model) | |
except Exception as e: | |
logger.error(f"Error loading models: {e}") | |
return f"Error loading models: {e}" | |
# Image pre-processing (resize and padding) | |
class ResizeWithPadding: | |
def __init__(self, size, fill=255): | |
self.size = size | |
self.fill = fill | |
def __call__(self, img): | |
if isinstance(img, np.ndarray): | |
img = Image.fromarray(img) | |
elif not isinstance(img, Image.Image): | |
raise TypeError("Input must be a PIL Image or a NumPy array") | |
width, height = img.size | |
max_dim = max(width, height) | |
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill)) | |
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2)) | |
img = new_img.resize((self.size, self.size), Image.LANCZOS) | |
return img | |
# The function to generate image from a prompt and conditional image | |
# @spaces.GPU(duration=180) | |
def infer(prompt, sample_image, recraft_model, seed=0): | |
global model, clip_l, t5xxl, ae, lora_model | |
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None: | |
logger.error("Models not loaded. Please load the models first.") | |
return None | |
model_path = model_paths[recraft_model] | |
frame_num = model_path['Frame'] | |
logger.info(f"Started generating image with prompt: {prompt}") | |
lora_model.to("cuda") | |
model.eval() | |
clip_l.eval() | |
t5xxl.eval() | |
ae.eval() | |
# # Load models | |
# model, [clip_l, t5xxl], ae = load_target_model() | |
# # LoRA | |
# multiplier = 1.0 | |
# weights_sd = load_file(LORA_WEIGHTS_PATH) | |
# lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, | |
# True) | |
# lora_model.apply_to([clip_l, t5xxl], model) | |
# info = lora_model.load_state_dict(weights_sd, strict=True) | |
# logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}") | |
# lora_model.eval() | |
# lora_model.to(device) | |
logger.info(f"Using seed: {seed}") | |
# Preprocess the conditional image | |
resize_transform = ResizeWithPadding(size=512) if frame_num == 4 else ResizeWithPadding(size=352) | |
img_transforms = transforms.Compose([ | |
resize_transform, | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
]) | |
image = img_transforms(np.array(sample_image, dtype=np.uint8)).unsqueeze(0).to( | |
device=device, | |
dtype=torch.bfloat16 | |
) | |
logger.debug("Conditional image preprocessed.") | |
# Encode the image to latents | |
ae.to(device) | |
latents = ae.encode(image) | |
logger.debug("Image encoded to latents.") | |
conditions = {} | |
# conditions[prompt] = latents.to("cpu") | |
conditions[prompt] = latents | |
# ae.to("cpu") | |
clip_l.to(device) | |
t5xxl.to(device) | |
# Encode the prompt | |
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512) | |
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True) | |
tokens_and_masks = tokenize_strategy.tokenize(prompt) | |
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True) | |
logger.debug("Prompt encoded.") | |
# Prepare the noise and other parameters | |
width = 1024 if frame_num == 4 else 1056 | |
height = 1024 if frame_num == 4 else 1056 | |
height = max(64, height - height % 16) | |
width = max(64, width - width % 16) | |
packed_latent_height = height // 16 | |
packed_latent_width = width // 16 | |
torch.manual_seed(seed) | |
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16) | |
logger.debug("Noise prepared.") | |
# Generate the image | |
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20 | |
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device) | |
t5_attn_mask = t5_attn_mask.to(device) | |
ae_outputs = conditions[prompt] | |
logger.debug("Image generation parameters set.") | |
args = lambda: None | |
args.frame_num = frame_num | |
# clip_l.to("cpu") | |
# t5xxl.to("cpu") | |
model.to(device) | |
print(f"Model device: {model.device}") | |
print(f"Noise device: {noise.device}") | |
print(f"Image IDs device: {img_ids.device}") | |
print(f"T5 output device: {t5_out.device}") | |
print(f"Text IDs device: {txt_ids.device}") | |
print(f"L pooled device: {l_pooled.device}") | |
# Run the denoising process | |
with accelerator.autocast(), torch.no_grad(): | |
x = flux_train_utils.denoise( | |
args, model, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=1.0, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs | |
) | |
logger.debug("Denoising process completed.") | |
# Decode the final image | |
x = x.float() | |
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width) | |
# model.to("cpu") | |
ae.to(device) | |
with accelerator.autocast(), torch.no_grad(): | |
x = ae.decode(x) | |
logger.debug("Latents decoded into image.") | |
# ae.to("cpu") | |
# Convert the tensor to an image | |
x = x.clamp(-1, 1) | |
x = x.permute(0, 2, 3, 1) | |
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0]) | |
logger.info("Image generation completed.") | |
return generated_image | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Recraft Generation") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Dropdown for selecting the recraft model | |
recraft_model = gr.Dropdown( | |
label="Select Recraft Model", | |
choices=["Wood Sculpture", "LEGO", "Sketch", "Portrait"], | |
value="Wood Sculpture" | |
) | |
# Load Model Button | |
load_button = gr.Button("Load Model") | |
with gr.Column(scale=1): | |
# Status message box | |
status_box = gr.Textbox(label="Status", placeholder="Model loading status", interactive=False, value="Model not loaded", lines=3) | |
with gr.Row(): | |
with gr.Column(scale=0.5): | |
# Input for the prompt | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=8) | |
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=42) | |
with gr.Column(scale=0.5): | |
# File upload for image | |
sample_image = gr.Image(label="Upload a Conditional Image", type="pil") | |
run_button = gr.Button("Generate Image") | |
with gr.Column(scale=1): | |
# Output result | |
result_image = gr.Image(label="Generated Image", interactive=False) | |
# Load model button action | |
load_button.click(fn=load_target_model, inputs=[recraft_model], outputs=[status_box]) | |
# Run Button | |
run_button.click(fn=infer, inputs=[prompt, sample_image, recraft_model, seed], outputs=[result_image]) | |
gr.Markdown("### Examples") | |
examples = [ | |
[ | |
"sks14, 2*2 puzzle of 4 sub-images, step-by-step wood sculpture carving process", # prompt | |
"./gradio_examples/wood_sculpture.png", | |
"Wood Sculpture", # recraft_model | |
12345 # seed | |
], | |
[ | |
"sks1, 3*3 puzzle of 9 sub-images, step-by-step lego model construction process", # prompt | |
"./gradio_examples/lego.png", | |
"LEGO", # recraft_model | |
42 # seed | |
], | |
[ | |
"sks6, 3*3 puzzle of 9 sub-images, step-by-step portrait painting process", # prompt | |
"./gradio_examples/portrait.png", | |
"Portrait", # recraft_model | |
999 # seed | |
], | |
[ | |
"sks10, 3*3 puzzle of 9 sub-images, step-by-step sketch painting process,", # prompt | |
"./gradio_examples/sketch.png", | |
"Sketch", | |
2023 | |
] | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt, sample_image, recraft_model, seed], | |
outputs=[result_image], | |
cache_examples=False | |
) | |
# Launch the Gradio app | |
demo.launch(server_port=8289, server_name="0.0.0.0", share=True) | |