yiren98's picture
main
c1bc1cb
# import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
from accelerate import Accelerator
import os
import time
from torchvision import transforms
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
import logging
from huggingface_hub import login
from huggingface_hub import hf_hub_download
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set up logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
# hf_token = os.getenv("HF_TOKEN")
# login(token=hf_token)
# # Model paths dynamically retrieved using selected model
# model_paths = {
# 'Wood Sculpture': {
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
# 'BASE_FILE': "flux_merge_lora/flux_merge_4f_wood-fp16.safetensors",
# 'LORA_REPO': "showlab/makeanything",
# 'LORA_FILE': "recraft/recraft_4f_wood_sculpture.safetensors",
# "Frame": 4
# },
# 'LEGO': {
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_lego-fp16.safetensors",
# 'LORA_REPO': "showlab/makeanything",
# 'LORA_FILE': "recraft/recraft_9f_lego.safetensors",
# "Frame": 9
# },
# 'Sketch': {
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_portrait-fp16.safetensors",
# 'LORA_REPO': "showlab/makeanything",
# 'LORA_FILE': "recraft/recraft_9f_sketch.safetensors",
# "Frame": 9
# },
# 'Portrait': {
# 'BASE_FLUX_CHECKPOINT': "showlab/makeanything",
# 'BASE_FILE': "flux_merge_lora/flux_merge_9f_sketch-fp16.safetensors",
# 'LORA_REPO': "showlab/makeanything",
# 'LORA_FILE': "recraft/recraft_9f_portrait.safetensors",
# "Frame": 9
# }
# }
# # Common paths
# clip_repo_id = "comfyanonymous/flux_text_encoders"
# t5xxl_file = "t5xxl_fp16.safetensors"
# clip_l_file = "clip_l.safetensors"
# ae_repo_id = "black-forest-labs/FLUX.1-dev"
# ae_file = "ae.safetensors"
model_paths = {
'Wood Sculpture': {
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_4f_wood_sculpture-fp8_e4m3fn.safetensors",
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_4f_wood_sculpture.safetensors",
'Frame': 4
},
'LEGO': {
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_lego-fp8_e4m3fn.safetensors",
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_lego.safetensors",
'Frame': 9
},
'Sketch': {
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_sketch-fp8_e4m3fn.safetensors",
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_sketch.safetensors",
'Frame': 9
},
'Portrait': {
'BASE_FLUX_CHECKPOINT': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/flux_merge_lora/flux_merge_9f_portrait-fp8_e4m3fn.safetensors",
'LORA_WEIGHTS_PATH': "/tiamat-NAS/songyiren/FYP/liucheng/makeanything_models/makeanything/recraft/recraft_9f_portrait.safetensors",
'Frame': 9
}
}
CLIP_L_PATH = "/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/clip_l.safetensors"
T5XXL_PATH = "/tiamat-NAS/songyiren/FYP/liucheng/ComfyUI/models/clip/t5xxl_fp16.safetensors"
AE_PATH = "/tiamat-vePFS/share_data/storage/huggingface/models/black-forest-labs/FLUX.1-dev/ae.safetensors"
# Model placeholders
model = None
clip_l = None
t5xxl = None
ae = None
lora_model = None
# Function to load a file from Hugging Face Hub
def download_file(repo_id, file_name):
return hf_hub_download(repo_id=repo_id, filename=file_name)
# Load model function with dynamic paths based on the selected model
def load_target_model(selected_model):
global model, clip_l, t5xxl, ae, lora_model
model_path = model_paths[selected_model]
BASE_FLUX_CHECKPOINT = model_path['BASE_FLUX_CHECKPOINT']
LORA_WEIGHTS_PATH = model_path['LORA_WEIGHTS_PATH']
logger.info("Loading models...")
try:
if model is None is None or clip_l is None or t5xxl is None or ae is None:
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False)
clip_l.eval()
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False)
t5xxl.eval()
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False)
logger.info("Models loaded successfully.")
# Load models
_, model = flux_utils.load_flow_model(
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False
)
# Load LoRA weights
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
logger.info("Models loaded successfully.")
return "Models loaded successfully. Using Recraft: {}".format(selected_model)
except Exception as e:
logger.error(f"Error loading models: {e}")
return f"Error loading models: {e}"
# Image pre-processing (resize and padding)
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
# The function to generate image from a prompt and conditional image
# @spaces.GPU(duration=180)
def infer(prompt, sample_image, recraft_model, seed=0):
global model, clip_l, t5xxl, ae, lora_model
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None:
logger.error("Models not loaded. Please load the models first.")
return None
model_path = model_paths[recraft_model]
frame_num = model_path['Frame']
logger.info(f"Started generating image with prompt: {prompt}")
lora_model.to("cuda")
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# # Load models
# model, [clip_l, t5xxl], ae = load_target_model()
# # LoRA
# multiplier = 1.0
# weights_sd = load_file(LORA_WEIGHTS_PATH)
# lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
# True)
# lora_model.apply_to([clip_l, t5xxl], model)
# info = lora_model.load_state_dict(weights_sd, strict=True)
# logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
# lora_model.eval()
# lora_model.to(device)
logger.info(f"Using seed: {seed}")
# Preprocess the conditional image
resize_transform = ResizeWithPadding(size=512) if frame_num == 4 else ResizeWithPadding(size=352)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
image = img_transforms(np.array(sample_image, dtype=np.uint8)).unsqueeze(0).to(
device=device,
dtype=torch.bfloat16
)
logger.debug("Conditional image preprocessed.")
# Encode the image to latents
ae.to(device)
latents = ae.encode(image)
logger.debug("Image encoded to latents.")
conditions = {}
# conditions[prompt] = latents.to("cpu")
conditions[prompt] = latents
# ae.to("cpu")
clip_l.to(device)
t5xxl.to(device)
# Encode the prompt
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
tokens_and_masks = tokenize_strategy.tokenize(prompt)
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True)
logger.debug("Prompt encoded.")
# Prepare the noise and other parameters
width = 1024 if frame_num == 4 else 1056
height = 1024 if frame_num == 4 else 1056
height = max(64, height - height % 16)
width = max(64, width - width % 16)
packed_latent_height = height // 16
packed_latent_width = width // 16
torch.manual_seed(seed)
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16)
logger.debug("Noise prepared.")
# Generate the image
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device)
t5_attn_mask = t5_attn_mask.to(device)
ae_outputs = conditions[prompt]
logger.debug("Image generation parameters set.")
args = lambda: None
args.frame_num = frame_num
# clip_l.to("cpu")
# t5xxl.to("cpu")
model.to(device)
print(f"Model device: {model.device}")
print(f"Noise device: {noise.device}")
print(f"Image IDs device: {img_ids.device}")
print(f"T5 output device: {t5_out.device}")
print(f"Text IDs device: {txt_ids.device}")
print(f"L pooled device: {l_pooled.device}")
# Run the denoising process
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(
args, model, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=1.0, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs
)
logger.debug("Denoising process completed.")
# Decode the final image
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
# model.to("cpu")
ae.to(device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
logger.debug("Latents decoded into image.")
# ae.to("cpu")
# Convert the tensor to an image
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
logger.info("Image generation completed.")
return generated_image
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Recraft Generation")
with gr.Row():
with gr.Column(scale=1):
# Dropdown for selecting the recraft model
recraft_model = gr.Dropdown(
label="Select Recraft Model",
choices=["Wood Sculpture", "LEGO", "Sketch", "Portrait"],
value="Wood Sculpture"
)
# Load Model Button
load_button = gr.Button("Load Model")
with gr.Column(scale=1):
# Status message box
status_box = gr.Textbox(label="Status", placeholder="Model loading status", interactive=False, value="Model not loaded", lines=3)
with gr.Row():
with gr.Column(scale=0.5):
# Input for the prompt
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=8)
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=42)
with gr.Column(scale=0.5):
# File upload for image
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
run_button = gr.Button("Generate Image")
with gr.Column(scale=1):
# Output result
result_image = gr.Image(label="Generated Image", interactive=False)
# Load model button action
load_button.click(fn=load_target_model, inputs=[recraft_model], outputs=[status_box])
# Run Button
run_button.click(fn=infer, inputs=[prompt, sample_image, recraft_model, seed], outputs=[result_image])
gr.Markdown("### Examples")
examples = [
[
"sks14, 2*2 puzzle of 4 sub-images, step-by-step wood sculpture carving process", # prompt
"./gradio_examples/wood_sculpture.png",
"Wood Sculpture", # recraft_model
12345 # seed
],
[
"sks1, 3*3 puzzle of 9 sub-images, step-by-step lego model construction process", # prompt
"./gradio_examples/lego.png",
"LEGO", # recraft_model
42 # seed
],
[
"sks6, 3*3 puzzle of 9 sub-images, step-by-step portrait painting process", # prompt
"./gradio_examples/portrait.png",
"Portrait", # recraft_model
999 # seed
],
[
"sks10, 3*3 puzzle of 9 sub-images, step-by-step sketch painting process,", # prompt
"./gradio_examples/sketch.png",
"Sketch",
2023
]
]
gr.Examples(
examples=examples,
inputs=[prompt, sample_image, recraft_model, seed],
outputs=[result_image],
cache_examples=False
)
# Launch the Gradio app
demo.launch(server_port=8289, server_name="0.0.0.0", share=True)