MakeAnything-AsymmertricLoRA / gradio_app_asy.py
yiren98's picture
optimizer gpu
893b046
import spaces
import gradio as gr
import torch
import numpy as np
from PIL import Image
from accelerate import Accelerator
import os
import time
import math
import json
from torchvision import transforms
from safetensors.torch import load_file
from networks import asylora_flux as lora_flux
from library import flux_utils, strategy_flux
import flux_minimal_inference_asylora as flux_train_utils
import logging
from huggingface_hub import login
from huggingface_hub import hf_hub_download
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set up logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token)
domain_index = {
'LEGO': 1, 'Cook': 2, 'Painting': 3, 'Icon': 4, 'Landscape illustration': 5,
'Portrait': 6, 'Transformer': 7, 'Sand art': 8, 'Illustration': 9, 'Sketch': 10,
'Clay toys': 11, 'Clay sculpture': 12, 'Zbrush Modeling': 13, 'Wood sculpture': 14,
'Ink painting': 15, 'Pencil sketch': 16, 'Fabric toys': 17, 'Oil painting': 18,
'Jade Carving': 19, 'Line draw': 20, 'Emoji': 21
}
lora_paths = {
"9 frame": "asymmetric_lora/asymmetric_lora_9f_general.safetensors",
"4 frame": "asymmetric_lora/asymmetric_lora_4f_general.safetensors"
}
# Common paths
flux_repo_id="Kijai/flux-fp8"
flux_file="flux1-dev-fp8.safetensors"
lora_repo_id="showlab/makeanything"
clip_repo_id = "comfyanonymous/flux_text_encoders"
t5xxl_file = "t5xxl_fp16.safetensors"
clip_l_file = "clip_l.safetensors"
ae_repo_id = "black-forest-labs/FLUX.1-dev"
ae_file = "ae.safetensors"
model = None
clip_l = None
t5xxl = None
ae = None
lora_model = None
# Function to load a file from Hugging Face Hub
def download_file(repo_id, file_name):
return hf_hub_download(repo_id=repo_id, filename=file_name)
# Load model function with dynamic paths based on the selected model
def load_target_model(frame, domain):
global model, clip_l, t5xxl, ae, lora_model
BASE_FLUX_CHECKPOINT=download_file(flux_repo_id, flux_file)
CLIP_L_PATH = download_file(clip_repo_id, clip_l_file)
T5XXL_PATH = download_file(clip_repo_id, t5xxl_file)
AE_PATH = download_file(ae_repo_id, ae_file)
LORA_WEIGHTS_PATH = download_file(lora_repo_id, lora_paths[frame])
logger.info("Loading models...")
_, model = flux_utils.load_flow_model(
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False
)
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False)
clip_l.eval()
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False)
t5xxl.eval()
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False)
logger.info("Models loaded successfully.")
# Load LoRA weights
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_ups_num = 10 if frame=="9 frame" else 21
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True, lora_ups_num=lora_ups_num)
for sub_lora in lora_model.unet_loras:
sub_lora.set_lora_up_cur(domain_index[domain]-1)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
logger.info("Models loaded successfully.")
return "Models loaded successfully. Using Frame: {}, Damain: {}".format(frame, domain)
# The function to generate image from a prompt and conditional image
@spaces.GPU(duration=180)
def infer(prompt, frame, seed=0):
global model, clip_l, t5xxl, ae, lora_model
if model is None or lora_model is None or clip_l is None or t5xxl is None or ae is None:
logger.error("Models not loaded. Please load the models first.")
return None
frame_num = int(frame[0:1])
logger.info(f"Started generating image with prompt: {prompt}")
lora_model.to("cuda")
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
logger.info(f"Using seed: {seed}")
ae.to("cpu")
clip_l.to(device)
t5xxl.to(device)
# Encode the prompt
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
tokens_and_masks = tokenize_strategy.tokenize(prompt)
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True)
logger.debug("Prompt encoded.")
# Prepare the noise and other parameters
width = 1024 if frame_num == 4 else 1056
height = 1024 if frame_num == 4 else 1056
packed_latent_height, packed_latent_width = math.ceil(height / 16), math.ceil(width / 16)
torch.manual_seed(seed)
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16)
logger.debug("Noise prepared.")
# Generate the image
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device)
t5_attn_mask = t5_attn_mask.to(device)
logger.debug("Image generation parameters set.")
args = lambda: None
args.frame_num = frame_num
clip_l.to("cpu")
t5xxl.to("cpu")
torch.cuda.empty_cache()
model.to(device)
print(f"Model device: {model.device}")
print(f"Noise device: {noise.device}")
print(f"Image IDs device: {img_ids.device}")
print(f"T5 output device: {t5_out.device}")
print(f"Text IDs device: {txt_ids.device}")
print(f"L pooled device: {l_pooled.device}")
# Run the denoising process
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(
model,
noise,
img_ids,
t5_out,
txt_ids,
l_pooled,
timesteps,
guidance=4.0,
t5_attn_mask=t5_attn_mask,
cfg_scale=1.0,
)
logger.debug("Denoising process completed.")
# Decode the final image
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
model.to("cpu")
ae.to(device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
logger.debug("Latents decoded into image.")
ae.to("cpu")
# Convert the tensor to an image
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
logger.info("Image generation completed.")
torch.cuda.empty_cache()
return generated_image
def update_domains(floor):
domains_dict = {
"4 frame": [
"LEGO", "Cook", "Painting", "Icon", "Landscape illustration",
"Portrait", "Transformer", "Sand art", "Illustration", "Sketch",
"Clay toys", "Clay sculpture", "Zbrush Modeling", "Wood sculpture", "Ink painting",
"Pencil sketch", "Fabric toys", "Oil painting", "Jade Carving", "Line draw", "Emoji"
],
"9 frame": [
"LEGO", "Cook", "Painting", "Icon", "Landscape illustration",
"Portrait", "Transformer", "Sand art", "Illustration", "Sketch"
]
}
return gr.Dropdown(choices=domains_dict[floor], label="Select Domains")
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Asymmertric LoRA Generation")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
with gr.Column(scale=1):
frame_selector = gr.Radio(choices=["4 frame", "9 frame"], label="Select Model")
with gr.Column(scale=2):
domain_selector = gr.Dropdown(choices=["LEGO", "Cook", "Painting", "Icon", "Landscape illustration",
"Portrait", "Transformer", "Sand art", "Illustration", "Sketch",
"Clay toys", "Clay sculpture", "Zbrush Modeling", "Wood sculpture", "Ink painting",
"Pencil sketch", "Fabric toys", "Oil painting", "Jade Carving", "Line draw", "Emoji"], label="Select Domains")
# Load Model Button
load_button = gr.Button("Load Model")
with gr.Column(scale=1):
# Status message box
status_box = gr.Textbox(label="Status", placeholder="Model loading status", interactive=False, value="Model not loaded", lines=3)
with gr.Row():
with gr.Column(scale=1):
# Input for the prompt
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=8)
with gr.Row():
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=42)
run_button = gr.Button("Generate Image")
with gr.Column(scale=1):
# Output result
result_image = gr.Image(label="Generated Image", interactive=False)
frame_selector.change(update_domains, inputs=frame_selector, outputs=domain_selector)
# Load model button action
load_button.click(fn=load_target_model, inputs=[frame_selector, domain_selector], outputs=[status_box])
# Run Button
run_button.click(fn=infer, inputs=[prompt, frame_selector, seed], outputs=[result_image])
gr.Markdown("### Examples")
examples = [
[
"9 frame",
"LEGO",
"sks1, 3*3 puzzle of 9 sub-images, step-by-step construction process of a LEGO model,<image-1> Lay down a gray plate as a road surface.<image-2> Position two red 2x4 bricks side by side to start forming a sports car’s chassis.<image-3> Attach black slope bricks at the front, shaping a sleek hood.<image-4> Insert transparent pieces at the front for headlights.<image-5> Clip on black wheel assemblies at each corner.<image-6> Add a windshield piece and a small black steering wheel inside.<image-7> Place smooth tiles on top to create a glossy roof.<image-8> Add side mirrors and a spoiler at the back.<image-9> Conclude by placing a minifigure driver behind the wheel, ready to race.",
1855705978
],
[
"9 frame",
"Portrait",
"sks6, 3*3 puzzle of 9 sub-images, step-by-step portrait painting process, woman with blonde curly hair",
1062070717
],
[
"9 frame",
"Sand art",
"sks8, 3*3 puzzle of 9 sub-images, step-by-step description of sand art creation, <image-1>: The outline of a classic pirate ship is drawn, capturing its sails and hull. <image-2>: Basic shapes of the ship’s structure and masts are added, defining its adventurous form. <image-3>: Details of the sails and rigging begin to appear, adding complexity. <image-4>: Shadows and highlights enhance the ship’s three-dimensional appearance. <image-5>: The ship’s deck and cannons are refined, giving it character. <image-6>: Additional elements like waves and seagulls are added for movement. <image-7>: A backdrop of a stormy sea with dark clouds is introduced, adding drama. <image-8>: Further details like lightning and crashing waves are sketched for intensity. <image-9>: Final touches include vibrant blues and grays, completing the thrilling pirate ship scene.",
641262478
],
]
gr.Examples(
examples=examples,
inputs=[frame_selector, domain_selector, prompt, seed],
outputs=[result_image],
cache_examples=False
)
# Launch the Gradio app
demo.launch()