yiren98's picture
main
c1bc1cb
# OFT network module
import math
import os
from typing import Dict, List, Optional, Tuple, Type, Union
from diffusers import AutoencoderKL
import einops
from transformers import CLIPTextModel
import numpy as np
import torch
import torch.nn.functional as F
import re
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
class OFTModule(torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
oft_name,
org_module: torch.nn.Module,
multiplier=1.0,
dim=4,
alpha=1,
split_dims: Optional[List[int]] = None,
):
"""
dim -> num blocks
alpha -> constraint
split_dims is used to mimic the split qkv of FLUX as same as Diffusers
"""
super().__init__()
self.oft_name = oft_name
self.num_blocks = dim
if type(alpha) == torch.Tensor:
alpha = alpha.detach().numpy()
self.register_buffer("alpha", torch.tensor(alpha))
# No conv2d in FLUX
# if "Linear" in org_module.__class__.__name__:
self.out_dim = org_module.out_features
# elif "Conv" in org_module.__class__.__name__:
# out_dim = org_module.out_channels
if split_dims is None:
split_dims = [self.out_dim]
else:
assert sum(split_dims) == self.out_dim, "sum of split_dims must be equal to out_dim"
self.split_dims = split_dims
# assert all dim is divisible by num_blocks
for split_dim in self.split_dims:
assert split_dim % self.num_blocks == 0, "split_dim must be divisible by num_blocks"
self.constraint = [alpha * split_dim for split_dim in self.split_dims]
self.block_size = [split_dim // self.num_blocks for split_dim in self.split_dims]
self.oft_blocks = torch.nn.ParameterList(
[torch.nn.Parameter(torch.zeros(self.num_blocks, block_size, block_size)) for block_size in self.block_size]
)
self.I = [torch.eye(block_size).unsqueeze(0).repeat(self.num_blocks, 1, 1) for block_size in self.block_size]
self.shape = org_module.weight.shape
self.multiplier = multiplier
self.org_module = [org_module] # moduleにならないようにlistに入れる
def apply_to(self):
self.org_forward = self.org_module[0].forward
self.org_module[0].forward = self.forward
def get_weight(self, multiplier=None):
if multiplier is None:
multiplier = self.multiplier
if self.I[0].device != self.oft_blocks[0].device:
self.I = [I.to(self.oft_blocks[0].device) for I in self.I]
block_R_weighted_list = []
for i in range(len(self.oft_blocks)):
block_Q = self.oft_blocks[i] - self.oft_blocks[i].transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint[i])
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
I = self.I[i]
block_R = torch.matmul(I + block_Q, (I - block_Q).float().inverse())
block_R_weighted = self.multiplier * (block_R - I) + I
block_R_weighted_list.append(block_R_weighted)
return block_R_weighted_list
def forward(self, x, scale=None):
if self.multiplier == 0.0:
return self.org_forward(x)
org_module = self.org_module[0]
org_dtype = x.dtype
R = self.get_weight()
W = org_module.weight.to(torch.float32)
B = org_module.bias.to(torch.float32)
# split W to match R
results = []
d2 = 0
for i in range(len(R)):
d1 = d2
d2 += self.split_dims[i]
W1 = W[d1:d2]
W_reshaped = einops.rearrange(W1, "(k n) m -> k n m", k=self.num_blocks, n=self.block_size[i])
RW_1 = torch.einsum("k n m, k n p -> k m p", R[i], W_reshaped)
RW_1 = einops.rearrange(RW_1, "k m p -> (k m) p")
B1 = B[d1:d2]
result = F.linear(x, RW_1.to(org_dtype), B1.to(org_dtype))
results.append(result)
result = torch.cat(results, dim=-1)
return result
class OFTInfModule(OFTModule):
def __init__(
self,
oft_name,
org_module: torch.nn.Module,
multiplier=1.0,
dim=4,
alpha=1,
split_dims: Optional[List[int]] = None,
**kwargs,
):
# no dropout for inference
super().__init__(oft_name, org_module, multiplier, dim, alpha, split_dims)
self.enabled = True
self.network: OFTNetwork = None
def set_network(self, network):
self.network = network
def forward(self, x, scale=None):
if not self.enabled:
return self.org_forward(x)
return super().forward(x, scale)
def merge_to(self, multiplier=None):
# get org weight
org_sd = self.org_module[0].state_dict()
W = org_sd["weight"].to(torch.float32)
R = self.get_weight(multiplier).to(torch.float32)
d2 = 0
W_list = []
for i in range(len(self.oft_blocks)):
d1 = d2
d2 += self.split_dims[i]
W1 = W[d1:d2]
W_reshaped = einops.rearrange(W1, "(k n) m -> k n m", k=self.num_blocks, n=self.block_size[i])
W1 = torch.einsum("k n m, k n p -> k m p", R[i], W_reshaped)
W1 = einops.rearrange(W1, "k m p -> (k m) p")
W_list.append(W1)
W = torch.cat(W_list, dim=-1)
# convert back to original dtype
W = W.to(org_sd["weight"].dtype)
# set weight to org_module
org_sd["weight"] = W
self.org_module[0].load_state_dict(org_sd)
def create_network(
multiplier: float,
network_dim: Optional[int],
network_alpha: Optional[float],
vae: AutoencoderKL,
text_encoder: Union[CLIPTextModel, List[CLIPTextModel]],
unet,
neuron_dropout: Optional[float] = None,
**kwargs,
):
if network_dim is None:
network_dim = 4 # default
if network_alpha is None: # should be set
logger.info(
"network_alpha is not set, use default value 1e-3 / network_alphaが設定されていないのでデフォルト値 1e-3 を使用します"
)
network_alpha = 1e-3
elif network_alpha >= 1:
logger.warning(
"network_alpha is too large (>=1, maybe default value is too large), please consider to set smaller value like 1e-3"
" / network_alphaが大きすぎるようです(>=1, デフォルト値が大きすぎる可能性があります)。1e-3のような小さな値を推奨"
)
# attn only or all linear (FFN) layers
enable_all_linear = kwargs.get("enable_all_linear", None)
# enable_conv = kwargs.get("enable_conv", None)
if enable_all_linear is not None:
enable_all_linear = bool(enable_all_linear)
# if enable_conv is not None:
# enable_conv = bool(enable_conv)
network = OFTNetwork(
text_encoder,
unet,
multiplier=multiplier,
dim=network_dim,
alpha=network_alpha,
enable_all_linear=enable_all_linear,
varbose=True,
)
return network
# Create network from weights for inference, weights are not loaded here (because can be merged)
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
if weights_sd is None:
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file, safe_open
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
# check dim, alpha and if weights have for conv2d
dim = None
alpha = None
all_linear = None
for name, param in weights_sd.items():
if name.endswith(".alpha"):
if alpha is None:
alpha = param.item()
elif "qkv" in name:
continue # ignore qkv
else:
if dim is None:
dim = param.size()[0]
if all_linear is None and "_mlp" in name:
all_linear = True
if dim is not None and alpha is not None and all_linear is not None:
break
if all_linear is None:
all_linear = False
module_class = OFTInfModule if for_inference else OFTModule
network = OFTNetwork(
text_encoder,
unet,
multiplier=multiplier,
dim=dim,
alpha=alpha,
enable_all_linear=all_linear,
module_class=module_class,
)
return network, weights_sd
class OFTNetwork(torch.nn.Module):
FLUX_TARGET_REPLACE_MODULE_ALL_LINEAR = ["DoubleStreamBlock", "SingleStreamBlock"]
FLUX_TARGET_REPLACE_MODULE_ATTN_ONLY = ["SelfAttention"]
OFT_PREFIX_UNET = "oft_unet"
def __init__(
self,
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
dim: int = 4,
alpha: float = 1,
enable_all_linear: Optional[bool] = False,
module_class: Union[Type[OFTModule], Type[OFTInfModule]] = OFTModule,
varbose: Optional[bool] = False,
) -> None:
super().__init__()
self.train_t5xxl = False # make compatible with LoRA
self.multiplier = multiplier
self.dim = dim
self.alpha = alpha
logger.info(
f"create OFT network. num blocks: {self.dim}, constraint: {self.alpha}, multiplier: {self.multiplier}, enable_all_linear: {enable_all_linear}"
)
# create module instances
def create_modules(
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[OFTModule]:
prefix = self.OFT_PREFIX_UNET
ofts = []
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = "Linear" in child_module.__class__.__name__
if is_linear:
oft_name = prefix + "." + name + "." + child_name
oft_name = oft_name.replace(".", "_")
# logger.info(oft_name)
if "double" in oft_name and "qkv" in oft_name:
split_dims = [3072] * 3
elif "single" in oft_name and "linear1" in oft_name:
split_dims = [3072] * 3 + [12288]
else:
split_dims = None
oft = module_class(oft_name, child_module, self.multiplier, dim, alpha, split_dims)
ofts.append(oft)
return ofts
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
if enable_all_linear:
target_modules = OFTNetwork.FLUX_TARGET_REPLACE_MODULE_ALL_LINEAR
else:
target_modules = OFTNetwork.FLUX_TARGET_REPLACE_MODULE_ATTN_ONLY
self.unet_ofts: List[OFTModule] = create_modules(unet, target_modules)
logger.info(f"create OFT for Flux: {len(self.unet_ofts)} modules.")
# assertion
names = set()
for oft in self.unet_ofts:
assert oft.oft_name not in names, f"duplicated oft name: {oft.oft_name}"
names.add(oft.oft_name)
def set_multiplier(self, multiplier):
self.multiplier = multiplier
for oft in self.unet_ofts:
oft.multiplier = self.multiplier
def load_weights(self, file):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
info = self.load_state_dict(weights_sd, False)
return info
def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True):
assert apply_unet, "apply_unet must be True"
for oft in self.unet_ofts:
oft.apply_to()
self.add_module(oft.oft_name, oft)
# マージできるかどうかを返す
def is_mergeable(self):
return True
# TODO refactor to common function with apply_to
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
logger.info("enable OFT for U-Net")
for oft in self.unet_ofts:
sd_for_lora = {}
for key in weights_sd.keys():
if key.startswith(oft.oft_name):
sd_for_lora[key[len(oft.oft_name) + 1 :]] = weights_sd[key]
oft.load_state_dict(sd_for_lora, False)
oft.merge_to()
logger.info(f"weights are merged")
# 二つのText Encoderに別々の学習率を設定できるようにするといいかも
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
self.requires_grad_(True)
all_params = []
def enumerate_params(ofts):
params = []
for oft in ofts:
params.extend(oft.parameters())
# logger.info num of params
num_params = 0
for p in params:
num_params += p.numel()
logger.info(f"OFT params: {num_params}")
return params
param_data = {"params": enumerate_params(self.unet_ofts)}
if unet_lr is not None:
param_data["lr"] = unet_lr
all_params.append(param_data)
return all_params
def enable_gradient_checkpointing(self):
# not supported
pass
def prepare_grad_etc(self, text_encoder, unet):
self.requires_grad_(True)
def on_epoch_start(self, text_encoder, unet):
self.train()
def get_trainable_params(self):
return self.parameters()
def save_weights(self, file, dtype, metadata):
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
if dtype is not None:
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
state_dict[key] = v
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
from library import train_util
# Precalculate model hashes to save time on indexing
if metadata is None:
metadata = {}
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
save_file(state_dict, file, metadata)
else:
torch.save(state_dict, file)
def backup_weights(self):
# 重みのバックアップを行う
ofts: List[OFTInfModule] = self.unet_ofts
for oft in ofts:
org_module = oft.org_module[0]
if not hasattr(org_module, "_lora_org_weight"):
sd = org_module.state_dict()
org_module._lora_org_weight = sd["weight"].detach().clone()
org_module._lora_restored = True
def restore_weights(self):
# 重みのリストアを行う
ofts: List[OFTInfModule] = self.unet_ofts
for oft in ofts:
org_module = oft.org_module[0]
if not org_module._lora_restored:
sd = org_module.state_dict()
sd["weight"] = org_module._lora_org_weight
org_module.load_state_dict(sd)
org_module._lora_restored = True
def pre_calculation(self):
# 事前計算を行う
ofts: List[OFTInfModule] = self.unet_ofts
for oft in ofts:
org_module = oft.org_module[0]
oft.merge_to()
# sd = org_module.state_dict()
# org_weight = sd["weight"]
# lora_weight = oft.get_weight().to(org_weight.device, dtype=org_weight.dtype)
# sd["weight"] = org_weight + lora_weight
# assert sd["weight"].shape == org_weight.shape
# org_module.load_state_dict(sd)
org_module._lora_restored = False
oft.enabled = False