Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import itertools | |
import json | |
import os | |
import re | |
import time | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
from library import sai_model_spec, train_util | |
import library.model_util as model_util | |
import lora | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
CLAMP_QUANTILE = 0.99 | |
ACCEPTABLE = [12, 17, 20, 26] | |
SDXL_LAYER_NUM = [12, 20] | |
LAYER12 = { | |
"BASE": True, | |
"IN00": False, | |
"IN01": False, | |
"IN02": False, | |
"IN03": False, | |
"IN04": True, | |
"IN05": True, | |
"IN06": False, | |
"IN07": True, | |
"IN08": True, | |
"IN09": False, | |
"IN10": False, | |
"IN11": False, | |
"MID": True, | |
"OUT00": True, | |
"OUT01": True, | |
"OUT02": True, | |
"OUT03": True, | |
"OUT04": True, | |
"OUT05": True, | |
"OUT06": False, | |
"OUT07": False, | |
"OUT08": False, | |
"OUT09": False, | |
"OUT10": False, | |
"OUT11": False, | |
} | |
LAYER17 = { | |
"BASE": True, | |
"IN00": False, | |
"IN01": True, | |
"IN02": True, | |
"IN03": False, | |
"IN04": True, | |
"IN05": True, | |
"IN06": False, | |
"IN07": True, | |
"IN08": True, | |
"IN09": False, | |
"IN10": False, | |
"IN11": False, | |
"MID": True, | |
"OUT00": False, | |
"OUT01": False, | |
"OUT02": False, | |
"OUT03": True, | |
"OUT04": True, | |
"OUT05": True, | |
"OUT06": True, | |
"OUT07": True, | |
"OUT08": True, | |
"OUT09": True, | |
"OUT10": True, | |
"OUT11": True, | |
} | |
LAYER20 = { | |
"BASE": True, | |
"IN00": True, | |
"IN01": True, | |
"IN02": True, | |
"IN03": True, | |
"IN04": True, | |
"IN05": True, | |
"IN06": True, | |
"IN07": True, | |
"IN08": True, | |
"IN09": False, | |
"IN10": False, | |
"IN11": False, | |
"MID": True, | |
"OUT00": True, | |
"OUT01": True, | |
"OUT02": True, | |
"OUT03": True, | |
"OUT04": True, | |
"OUT05": True, | |
"OUT06": True, | |
"OUT07": True, | |
"OUT08": True, | |
"OUT09": False, | |
"OUT10": False, | |
"OUT11": False, | |
} | |
LAYER26 = { | |
"BASE": True, | |
"IN00": True, | |
"IN01": True, | |
"IN02": True, | |
"IN03": True, | |
"IN04": True, | |
"IN05": True, | |
"IN06": True, | |
"IN07": True, | |
"IN08": True, | |
"IN09": True, | |
"IN10": True, | |
"IN11": True, | |
"MID": True, | |
"OUT00": True, | |
"OUT01": True, | |
"OUT02": True, | |
"OUT03": True, | |
"OUT04": True, | |
"OUT05": True, | |
"OUT06": True, | |
"OUT07": True, | |
"OUT08": True, | |
"OUT09": True, | |
"OUT10": True, | |
"OUT11": True, | |
} | |
assert len([v for v in LAYER12.values() if v]) == 12 | |
assert len([v for v in LAYER17.values() if v]) == 17 | |
assert len([v for v in LAYER20.values() if v]) == 20 | |
assert len([v for v in LAYER26.values() if v]) == 26 | |
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
def get_lbw_block_index(lora_name: str, is_sdxl: bool = False) -> int: | |
# lbw block index is 0-based, but 0 for text encoder, so we return 0 for text encoder | |
if "text_model_encoder_" in lora_name: # LoRA for text encoder | |
return 0 | |
# lbw block index is 1-based for U-Net, and no "input_blocks.0" in CompVis SD, so "input_blocks.1" have index 2 | |
block_idx = -1 # invalid lora name | |
if not is_sdxl: | |
NUM_OF_BLOCKS = 12 # up/down blocks | |
m = RE_UPDOWN.search(lora_name) | |
if m: | |
g = m.groups() | |
up_down = g[0] | |
i = int(g[1]) | |
j = int(g[3]) | |
if up_down == "down": | |
if g[2] == "resnets" or g[2] == "attentions": | |
idx = 3 * i + j + 1 | |
elif g[2] == "downsamplers": | |
idx = 3 * (i + 1) | |
else: | |
return block_idx # invalid lora name | |
elif up_down == "up": | |
if g[2] == "resnets" or g[2] == "attentions": | |
idx = 3 * i + j | |
elif g[2] == "upsamplers": | |
idx = 3 * i + 2 | |
else: | |
return block_idx # invalid lora name | |
if g[0] == "down": | |
block_idx = 1 + idx # 1-based index, down block index | |
elif g[0] == "up": | |
block_idx = 1 + NUM_OF_BLOCKS + 1 + idx # 1-based index, num blocks, mid block, up block index | |
elif "mid_block_" in lora_name: | |
block_idx = 1 + NUM_OF_BLOCKS # 1-based index, num blocks, mid block | |
else: | |
# SDXL: some numbers are skipped | |
if lora_name.startswith("lora_unet_"): | |
name = lora_name[len("lora_unet_") :] | |
if name.startswith("time_embed_") or name.startswith("label_emb_"): # 1, No LoRA in sd-scripts | |
block_idx = 1 | |
elif name.startswith("input_blocks_"): # 1-8 to 2-9 | |
block_idx = 1 + int(name.split("_")[2]) | |
elif name.startswith("middle_block_"): # 13 | |
block_idx = 13 | |
elif name.startswith("output_blocks_"): # 0-8 to 14-22 | |
block_idx = 14 + int(name.split("_")[2]) | |
elif name.startswith("out_"): # 23, No LoRA in sd-scripts | |
block_idx = 23 | |
return block_idx | |
def load_state_dict(file_name, dtype): | |
if os.path.splitext(file_name)[1] == ".safetensors": | |
sd = load_file(file_name) | |
metadata = train_util.load_metadata_from_safetensors(file_name) | |
else: | |
sd = torch.load(file_name, map_location="cpu") | |
metadata = {} | |
for key in list(sd.keys()): | |
if type(sd[key]) == torch.Tensor: | |
sd[key] = sd[key].to(dtype) | |
return sd, metadata | |
def save_to_file(file_name, state_dict, metadata): | |
if os.path.splitext(file_name)[1] == ".safetensors": | |
save_file(state_dict, file_name, metadata=metadata) | |
else: | |
torch.save(state_dict, file_name) | |
def format_lbws(lbws): | |
try: | |
# lbwは"[1,1,1,1,1,1,1,1,1,1,1,1]"のような文字列で与えられることを期待している | |
lbws = [json.loads(lbw) for lbw in lbws] | |
except Exception: | |
raise ValueError(f"format of lbws are must be json / 層別適用率はJSON形式で書いてください") | |
assert all(isinstance(lbw, list) for lbw in lbws), f"lbws are must be list / 層別適用率はリストにしてください" | |
assert len(set(len(lbw) for lbw in lbws)) == 1, "all lbws should have the same length / 層別適用率は同じ長さにしてください" | |
assert all( | |
len(lbw) in ACCEPTABLE for lbw in lbws | |
), f"length of lbw are must be in {ACCEPTABLE} / 層別適用率の長さは{ACCEPTABLE}のいずれかにしてください" | |
assert all( | |
all(isinstance(weight, (int, float)) for weight in lbw) for lbw in lbws | |
), f"values of lbs are must be numbers / 層別適用率の値はすべて数値にしてください" | |
layer_num = len(lbws[0]) | |
is_sdxl = True if layer_num in SDXL_LAYER_NUM else False | |
FLAGS = { | |
"12": LAYER12.values(), | |
"17": LAYER17.values(), | |
"20": LAYER20.values(), | |
"26": LAYER26.values(), | |
}[str(layer_num)] | |
LBW_TARGET_IDX = [i for i, flag in enumerate(FLAGS) if flag] | |
return lbws, is_sdxl, LBW_TARGET_IDX | |
def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, merge_dtype): | |
logger.info(f"new rank: {new_rank}, new conv rank: {new_conv_rank}") | |
merged_sd = {} | |
v2 = None # This is meaning LoRA Metadata v2, Not meaning SD2 | |
base_model = None | |
if lbws: | |
lbws, is_sdxl, LBW_TARGET_IDX = format_lbws(lbws) | |
else: | |
is_sdxl = False | |
LBW_TARGET_IDX = [] | |
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): | |
logger.info(f"loading: {model}") | |
lora_sd, lora_metadata = load_state_dict(model, merge_dtype) | |
if lora_metadata is not None: | |
if v2 is None: | |
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string | |
if base_model is None: | |
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) | |
if lbw: | |
lbw_weights = [1] * 26 | |
for index, value in zip(LBW_TARGET_IDX, lbw): | |
lbw_weights[index] = value | |
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") | |
# merge | |
logger.info(f"merging...") | |
for key in tqdm(list(lora_sd.keys())): | |
if "lora_down" not in key: | |
continue | |
lora_module_name = key[: key.rfind(".lora_down")] | |
down_weight = lora_sd[key] | |
network_dim = down_weight.size()[0] | |
up_weight = lora_sd[lora_module_name + ".lora_up.weight"] | |
alpha = lora_sd.get(lora_module_name + ".alpha", network_dim) | |
in_dim = down_weight.size()[1] | |
out_dim = up_weight.size()[0] | |
conv2d = len(down_weight.size()) == 4 | |
kernel_size = None if not conv2d else down_weight.size()[2:4] | |
# logger.info(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size) | |
# make original weight if not exist | |
if lora_module_name not in merged_sd: | |
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype) | |
else: | |
weight = merged_sd[lora_module_name] | |
if device: | |
weight = weight.to(device) | |
# merge to weight | |
if device: | |
up_weight = up_weight.to(device) | |
down_weight = down_weight.to(device) | |
# W <- W + U * D | |
scale = alpha / network_dim | |
if lbw: | |
index = get_lbw_block_index(key, is_sdxl) | |
is_lbw_target = index in LBW_TARGET_IDX | |
if is_lbw_target: | |
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける | |
if device: # and isinstance(scale, torch.Tensor): | |
scale = scale.to(device) | |
if not conv2d: # linear | |
weight = weight + ratio * (up_weight @ down_weight) * scale | |
elif kernel_size == (1, 1): | |
weight = ( | |
weight | |
+ ratio | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* scale | |
) | |
else: | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
weight = weight + ratio * conved * scale | |
merged_sd[lora_module_name] = weight.to("cpu") | |
# extract from merged weights | |
logger.info("extract new lora...") | |
merged_lora_sd = {} | |
with torch.no_grad(): | |
for lora_module_name, mat in tqdm(list(merged_sd.items())): | |
if device: | |
mat = mat.to(device) | |
conv2d = len(mat.size()) == 4 | |
kernel_size = None if not conv2d else mat.size()[2:4] | |
conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
out_dim, in_dim = mat.size()[0:2] | |
if conv2d: | |
if conv2d_3x3: | |
mat = mat.flatten(start_dim=1) | |
else: | |
mat = mat.squeeze() | |
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank | |
module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
U, S, Vh = torch.linalg.svd(mat) | |
U = U[:, :module_new_rank] | |
S = S[:module_new_rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:module_new_rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
if conv2d: | |
U = U.reshape(out_dim, module_new_rank, 1, 1) | |
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1]) | |
up_weight = U | |
down_weight = Vh | |
merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous() | |
merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous() | |
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu") | |
# build minimum metadata | |
dims = f"{new_rank}" | |
alphas = f"{new_rank}" | |
if new_conv_rank is not None: | |
network_args = {"conv_dim": new_conv_rank, "conv_alpha": new_conv_rank} | |
else: | |
network_args = None | |
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, network_args) | |
return merged_lora_sd, metadata, v2 == "True", base_model | |
def merge(args): | |
assert len(args.models) == len( | |
args.ratios | |
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" | |
if args.lbws: | |
assert len(args.models) == len( | |
args.lbws | |
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください" | |
else: | |
args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく | |
def str_to_dtype(p): | |
if p == "float": | |
return torch.float | |
if p == "fp16": | |
return torch.float16 | |
if p == "bf16": | |
return torch.bfloat16 | |
return None | |
merge_dtype = str_to_dtype(args.precision) | |
save_dtype = str_to_dtype(args.save_precision) | |
if save_dtype is None: | |
save_dtype = merge_dtype | |
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank | |
state_dict, metadata, v2, base_model = merge_lora_models( | |
args.models, args.ratios, args.lbws, args.new_rank, new_conv_rank, args.device, merge_dtype | |
) | |
# cast to save_dtype before calculating hashes | |
for key in list(state_dict.keys()): | |
value = state_dict[key] | |
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: | |
state_dict[key] = value.to(save_dtype) | |
logger.info(f"calculating hashes and creating metadata...") | |
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
if not args.no_metadata: | |
is_sdxl = base_model is not None and base_model.lower().startswith("sdxl") | |
merged_from = sai_model_spec.build_merged_from(args.models) | |
title = os.path.splitext(os.path.basename(args.save_to))[0] | |
sai_metadata = sai_model_spec.build_metadata( | |
state_dict, v2, v2, is_sdxl, True, False, time.time(), title=title, merged_from=merged_from | |
) | |
if v2: | |
# TODO read sai modelspec | |
logger.warning( | |
"Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します" | |
) | |
metadata.update(sai_metadata) | |
logger.info(f"saving model to: {args.save_to}") | |
save_to_file(args.save_to, state_dict, metadata) | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
default="float", | |
choices=["float", "fp16", "bf16"], | |
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", | |
) | |
parser.add_argument( | |
"--save_to", | |
type=str, | |
default=None, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--models", | |
type=str, | |
nargs="*", | |
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors", | |
) | |
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") | |
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率") | |
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") | |
parser.add_argument( | |
"--new_conv_rank", | |
type=int, | |
default=None, | |
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ", | |
) | |
parser.add_argument( | |
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う" | |
) | |
parser.add_argument( | |
"--no_metadata", | |
action="store_true", | |
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
merge(args) | |