yiren98's picture
main
c1bc1cb
import argparse
import itertools
import json
import os
import re
import time
import torch
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library import sai_model_spec, train_util
import library.model_util as model_util
import lora
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
CLAMP_QUANTILE = 0.99
ACCEPTABLE = [12, 17, 20, 26]
SDXL_LAYER_NUM = [12, 20]
LAYER12 = {
"BASE": True,
"IN00": False,
"IN01": False,
"IN02": False,
"IN03": False,
"IN04": True,
"IN05": True,
"IN06": False,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": False,
"OUT07": False,
"OUT08": False,
"OUT09": False,
"OUT10": False,
"OUT11": False,
}
LAYER17 = {
"BASE": True,
"IN00": False,
"IN01": True,
"IN02": True,
"IN03": False,
"IN04": True,
"IN05": True,
"IN06": False,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": False,
"OUT01": False,
"OUT02": False,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": True,
"OUT10": True,
"OUT11": True,
}
LAYER20 = {
"BASE": True,
"IN00": True,
"IN01": True,
"IN02": True,
"IN03": True,
"IN04": True,
"IN05": True,
"IN06": True,
"IN07": True,
"IN08": True,
"IN09": False,
"IN10": False,
"IN11": False,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": False,
"OUT10": False,
"OUT11": False,
}
LAYER26 = {
"BASE": True,
"IN00": True,
"IN01": True,
"IN02": True,
"IN03": True,
"IN04": True,
"IN05": True,
"IN06": True,
"IN07": True,
"IN08": True,
"IN09": True,
"IN10": True,
"IN11": True,
"MID": True,
"OUT00": True,
"OUT01": True,
"OUT02": True,
"OUT03": True,
"OUT04": True,
"OUT05": True,
"OUT06": True,
"OUT07": True,
"OUT08": True,
"OUT09": True,
"OUT10": True,
"OUT11": True,
}
assert len([v for v in LAYER12.values() if v]) == 12
assert len([v for v in LAYER17.values() if v]) == 17
assert len([v for v in LAYER20.values() if v]) == 20
assert len([v for v in LAYER26.values() if v]) == 26
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
def get_lbw_block_index(lora_name: str, is_sdxl: bool = False) -> int:
# lbw block index is 0-based, but 0 for text encoder, so we return 0 for text encoder
if "text_model_encoder_" in lora_name: # LoRA for text encoder
return 0
# lbw block index is 1-based for U-Net, and no "input_blocks.0" in CompVis SD, so "input_blocks.1" have index 2
block_idx = -1 # invalid lora name
if not is_sdxl:
NUM_OF_BLOCKS = 12 # up/down blocks
m = RE_UPDOWN.search(lora_name)
if m:
g = m.groups()
up_down = g[0]
i = int(g[1])
j = int(g[3])
if up_down == "down":
if g[2] == "resnets" or g[2] == "attentions":
idx = 3 * i + j + 1
elif g[2] == "downsamplers":
idx = 3 * (i + 1)
else:
return block_idx # invalid lora name
elif up_down == "up":
if g[2] == "resnets" or g[2] == "attentions":
idx = 3 * i + j
elif g[2] == "upsamplers":
idx = 3 * i + 2
else:
return block_idx # invalid lora name
if g[0] == "down":
block_idx = 1 + idx # 1-based index, down block index
elif g[0] == "up":
block_idx = 1 + NUM_OF_BLOCKS + 1 + idx # 1-based index, num blocks, mid block, up block index
elif "mid_block_" in lora_name:
block_idx = 1 + NUM_OF_BLOCKS # 1-based index, num blocks, mid block
else:
# SDXL: some numbers are skipped
if lora_name.startswith("lora_unet_"):
name = lora_name[len("lora_unet_") :]
if name.startswith("time_embed_") or name.startswith("label_emb_"): # 1, No LoRA in sd-scripts
block_idx = 1
elif name.startswith("input_blocks_"): # 1-8 to 2-9
block_idx = 1 + int(name.split("_")[2])
elif name.startswith("middle_block_"): # 13
block_idx = 13
elif name.startswith("output_blocks_"): # 0-8 to 14-22
block_idx = 14 + int(name.split("_")[2])
elif name.startswith("out_"): # 23, No LoRA in sd-scripts
block_idx = 23
return block_idx
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, state_dict, metadata):
if os.path.splitext(file_name)[1] == ".safetensors":
save_file(state_dict, file_name, metadata=metadata)
else:
torch.save(state_dict, file_name)
def format_lbws(lbws):
try:
# lbwは"[1,1,1,1,1,1,1,1,1,1,1,1]"のような文字列で与えられることを期待している
lbws = [json.loads(lbw) for lbw in lbws]
except Exception:
raise ValueError(f"format of lbws are must be json / 層別適用率はJSON形式で書いてください")
assert all(isinstance(lbw, list) for lbw in lbws), f"lbws are must be list / 層別適用率はリストにしてください"
assert len(set(len(lbw) for lbw in lbws)) == 1, "all lbws should have the same length / 層別適用率は同じ長さにしてください"
assert all(
len(lbw) in ACCEPTABLE for lbw in lbws
), f"length of lbw are must be in {ACCEPTABLE} / 層別適用率の長さは{ACCEPTABLE}のいずれかにしてください"
assert all(
all(isinstance(weight, (int, float)) for weight in lbw) for lbw in lbws
), f"values of lbs are must be numbers / 層別適用率の値はすべて数値にしてください"
layer_num = len(lbws[0])
is_sdxl = True if layer_num in SDXL_LAYER_NUM else False
FLAGS = {
"12": LAYER12.values(),
"17": LAYER17.values(),
"20": LAYER20.values(),
"26": LAYER26.values(),
}[str(layer_num)]
LBW_TARGET_IDX = [i for i, flag in enumerate(FLAGS) if flag]
return lbws, is_sdxl, LBW_TARGET_IDX
def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, merge_dtype):
logger.info(f"new rank: {new_rank}, new conv rank: {new_conv_rank}")
merged_sd = {}
v2 = None # This is meaning LoRA Metadata v2, Not meaning SD2
base_model = None
if lbws:
lbws, is_sdxl, LBW_TARGET_IDX = format_lbws(lbws)
else:
is_sdxl = False
LBW_TARGET_IDX = []
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws):
logger.info(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lora_metadata is not None:
if v2 is None:
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # return string
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
if lbw:
lbw_weights = [1] * 26
for index, value in zip(LBW_TARGET_IDX, lbw):
lbw_weights[index] = value
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}")
# merge
logger.info(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if "lora_down" not in key:
continue
lora_module_name = key[: key.rfind(".lora_down")]
down_weight = lora_sd[key]
network_dim = down_weight.size()[0]
up_weight = lora_sd[lora_module_name + ".lora_up.weight"]
alpha = lora_sd.get(lora_module_name + ".alpha", network_dim)
in_dim = down_weight.size()[1]
out_dim = up_weight.size()[0]
conv2d = len(down_weight.size()) == 4
kernel_size = None if not conv2d else down_weight.size()[2:4]
# logger.info(lora_module_name, network_dim, alpha, in_dim, out_dim, kernel_size)
# make original weight if not exist
if lora_module_name not in merged_sd:
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype)
else:
weight = merged_sd[lora_module_name]
if device:
weight = weight.to(device)
# merge to weight
if device:
up_weight = up_weight.to(device)
down_weight = down_weight.to(device)
# W <- W + U * D
scale = alpha / network_dim
if lbw:
index = get_lbw_block_index(key, is_sdxl)
is_lbw_target = index in LBW_TARGET_IDX
if is_lbw_target:
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける
if device: # and isinstance(scale, torch.Tensor):
scale = scale.to(device)
if not conv2d: # linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif kernel_size == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
merged_sd[lora_module_name] = weight.to("cpu")
# extract from merged weights
logger.info("extract new lora...")
merged_lora_sd = {}
with torch.no_grad():
for lora_module_name, mat in tqdm(list(merged_sd.items())):
if device:
mat = mat.to(device)
conv2d = len(mat.size()) == 4
kernel_size = None if not conv2d else mat.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = mat.size()[0:2]
if conv2d:
if conv2d_3x3:
mat = mat.flatten(start_dim=1)
else:
mat = mat.squeeze()
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank
module_new_rank = min(module_new_rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :module_new_rank]
S = S[:module_new_rank]
U = U @ torch.diag(S)
Vh = Vh[:module_new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, module_new_rank, 1, 1)
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1])
up_weight = U
down_weight = Vh
merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous()
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu")
# build minimum metadata
dims = f"{new_rank}"
alphas = f"{new_rank}"
if new_conv_rank is not None:
network_args = {"conv_dim": new_conv_rank, "conv_alpha": new_conv_rank}
else:
network_args = None
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, network_args)
return merged_lora_sd, metadata, v2 == "True", base_model
def merge(args):
assert len(args.models) == len(
args.ratios
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
if args.lbws:
assert len(args.models) == len(
args.lbws
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください"
else:
args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank
state_dict, metadata, v2, base_model = merge_lora_models(
args.models, args.ratios, args.lbws, args.new_rank, new_conv_rank, args.device, merge_dtype
)
# cast to save_dtype before calculating hashes
for key in list(state_dict.keys()):
value = state_dict[key]
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype:
state_dict[key] = value.to(save_dtype)
logger.info(f"calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
is_sdxl = base_model is not None and base_model.lower().startswith("sdxl")
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
state_dict, v2, v2, is_sdxl, True, False, time.time(), title=title, merged_from=merged_from
)
if v2:
# TODO read sai modelspec
logger.warning(
"Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します"
)
metadata.update(sai_metadata)
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, state_dict, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
choices=["float", "fp16", "bf16"],
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors",
)
parser.add_argument(
"--models",
type=str,
nargs="*",
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors",
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率")
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)")
parser.add_argument(
"--new_conv_rank",
type=int,
default=None,
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ",
)
parser.add_argument(
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
)
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)