Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,336 Bytes
36ed92b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
# Minimum Inference Code for FLUX
import argparse
import datetime
import math
import os
import random
from typing import Callable, List, Optional
import einops
import numpy as np
import torch
from tqdm import tqdm
from PIL import Image
import accelerate
from transformers import CLIPTextModel
from safetensors.torch import load_file
from library import device_utils
from library.device_utils import init_ipex, get_preferred_device
from networks import oft_flux
init_ipex()
from library.utils import setup_logging, str_to_dtype
setup_logging()
import logging
logger = logging.getLogger(__name__)
import networks.asylora_flux as lora_flux
from library import flux_models, flux_utils, sd3_utils, strategy_flux
def time_shift(mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: flux_models.Flux,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
timesteps: list[float],
guidance: float = 4.0,
t5_attn_mask: Optional[torch.Tensor] = None,
neg_txt: Optional[torch.Tensor] = None,
neg_vec: Optional[torch.Tensor] = None,
neg_t5_attn_mask: Optional[torch.Tensor] = None,
cfg_scale: Optional[float] = None,
):
# this is ignored for schnell
logger.info(f"guidance: {guidance}, cfg_scale: {cfg_scale}")
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
# prepare classifier free guidance
if neg_txt is not None and neg_vec is not None:
b_img_ids = torch.cat([img_ids, img_ids], dim=0)
b_txt_ids = torch.cat([txt_ids, txt_ids], dim=0)
b_txt = torch.cat([neg_txt, txt], dim=0)
b_vec = torch.cat([neg_vec, vec], dim=0)
if t5_attn_mask is not None and neg_t5_attn_mask is not None:
b_t5_attn_mask = torch.cat([neg_t5_attn_mask, t5_attn_mask], dim=0)
else:
b_t5_attn_mask = None
else:
b_img_ids = img_ids
b_txt_ids = txt_ids
b_txt = txt
b_vec = vec
b_t5_attn_mask = t5_attn_mask
for t_curr, t_prev in zip(tqdm(timesteps[:-1]), timesteps[1:]):
t_vec = torch.full((b_img_ids.shape[0],), t_curr, dtype=img.dtype, device=img.device)
# classifier free guidance
if neg_txt is not None and neg_vec is not None:
b_img = torch.cat([img, img], dim=0)
else:
b_img = img
pred = model(
img=b_img,
img_ids=b_img_ids,
txt=b_txt,
txt_ids=b_txt_ids,
y=b_vec,
timesteps=t_vec,
guidance=guidance_vec,
txt_attention_mask=b_t5_attn_mask,
)
# classifier free guidance
if neg_txt is not None and neg_vec is not None:
pred_uncond, pred = torch.chunk(pred, 2, dim=0)
pred = pred_uncond + cfg_scale * (pred - pred_uncond)
img = img + (t_prev - t_curr) * pred
return img
def do_sample(
accelerator: Optional[accelerate.Accelerator],
model: flux_models.Flux,
img: torch.Tensor,
img_ids: torch.Tensor,
l_pooled: torch.Tensor,
t5_out: torch.Tensor,
txt_ids: torch.Tensor,
num_steps: int,
guidance: float,
t5_attn_mask: Optional[torch.Tensor],
is_schnell: bool,
device: torch.device,
flux_dtype: torch.dtype,
neg_l_pooled: Optional[torch.Tensor] = None,
neg_t5_out: Optional[torch.Tensor] = None,
neg_t5_attn_mask: Optional[torch.Tensor] = None,
cfg_scale: Optional[float] = None,
):
logger.info(f"num_steps: {num_steps}")
timesteps = get_schedule(num_steps, img.shape[1], shift=not is_schnell)
# denoise initial noise
if accelerator:
with accelerator.autocast(), torch.no_grad():
x = denoise(
model,
img,
img_ids,
t5_out,
txt_ids,
l_pooled,
timesteps,
guidance,
t5_attn_mask,
neg_t5_out,
neg_l_pooled,
neg_t5_attn_mask,
cfg_scale,
)
else:
with torch.autocast(device_type=device.type, dtype=flux_dtype), torch.no_grad():
x = denoise(
model,
img,
img_ids,
t5_out,
txt_ids,
l_pooled,
timesteps,
guidance,
t5_attn_mask,
neg_t5_out,
neg_l_pooled,
neg_t5_attn_mask,
cfg_scale,
)
return x
def generate_image(
model,
clip_l: CLIPTextModel,
t5xxl,
ae,
prompt: str,
seed: Optional[int],
image_width: int,
image_height: int,
steps: Optional[int],
guidance: float,
negative_prompt: Optional[str],
cfg_scale: float,
):
seed = seed if seed is not None else random.randint(0, 2**32 - 1)
logger.info(f"Seed: {seed}")
# make first noise with packed shape
# original: b,16,2*h//16,2*w//16, packed: b,h//16*w//16,16*2*2
packed_latent_height, packed_latent_width = math.ceil(image_height / 16), math.ceil(image_width / 16)
noise_dtype = torch.float32 if is_fp8(dtype) else dtype
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=device,
dtype=noise_dtype,
generator=torch.Generator(device=device).manual_seed(seed),
)
# prepare img and img ids
# this is needed only for img2img
# img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
# if img.shape[0] == 1 and bs > 1:
# img = repeat(img, "1 ... -> bs ...", bs=bs)
# txt2img only needs img_ids
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width)
# prepare fp8 models
if is_fp8(clip_l_dtype) and (not hasattr(clip_l, "fp8_prepared") or not clip_l.fp8_prepared):
logger.info(f"prepare CLIP-L for fp8: set to {clip_l_dtype}, set embeddings to {torch.bfloat16}")
clip_l.to(clip_l_dtype) # fp8
clip_l.text_model.embeddings.to(dtype=torch.bfloat16)
clip_l.fp8_prepared = True
if is_fp8(t5xxl_dtype) and (not hasattr(t5xxl, "fp8_prepared") or not t5xxl.fp8_prepared):
logger.info(f"prepare T5xxl for fp8: set to {t5xxl_dtype}")
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
t5xxl.to(t5xxl_dtype)
prepare_fp8(t5xxl.encoder, torch.bfloat16)
t5xxl.fp8_prepared = True
# prepare embeddings
logger.info("Encoding prompts...")
clip_l = clip_l.to(device)
t5xxl = t5xxl.to(device)
def encode(prpt: str):
tokens_and_masks = tokenize_strategy.tokenize(prpt)
with torch.no_grad():
if is_fp8(clip_l_dtype):
with accelerator.autocast():
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
else:
with torch.autocast(device_type=device.type, dtype=clip_l_dtype):
l_pooled, _, _, _ = encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, None], tokens_and_masks)
if is_fp8(t5xxl_dtype):
with accelerator.autocast():
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
else:
with torch.autocast(device_type=device.type, dtype=t5xxl_dtype):
_, t5_out, txt_ids, t5_attn_mask = encoding_strategy.encode_tokens(
tokenize_strategy, [None, t5xxl], tokens_and_masks, args.apply_t5_attn_mask
)
return l_pooled, t5_out, txt_ids, t5_attn_mask
l_pooled, t5_out, txt_ids, t5_attn_mask = encode(prompt)
if negative_prompt:
neg_l_pooled, neg_t5_out, _, neg_t5_attn_mask = encode(negative_prompt)
else:
neg_l_pooled, neg_t5_out, neg_t5_attn_mask = None, None, None
# NaN check
if torch.isnan(l_pooled).any():
raise ValueError("NaN in l_pooled")
if torch.isnan(t5_out).any():
raise ValueError("NaN in t5_out")
if args.offload:
clip_l = clip_l.cpu()
t5xxl = t5xxl.cpu()
# del clip_l, t5xxl
device_utils.clean_memory()
# generate image
logger.info("Generating image...")
model = model.to(device)
if steps is None:
steps = 4 if is_schnell else 50
img_ids = img_ids.to(device)
t5_attn_mask = t5_attn_mask.to(device) if args.apply_t5_attn_mask else None
x = do_sample(
accelerator,
model,
noise,
img_ids,
l_pooled,
t5_out,
txt_ids,
steps,
guidance,
t5_attn_mask,
is_schnell,
device,
flux_dtype,
neg_l_pooled,
neg_t5_out,
neg_t5_attn_mask,
cfg_scale,
)
if args.offload:
model = model.cpu()
# del model
device_utils.clean_memory()
# unpack
x = x.float()
x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2)
# decode
logger.info("Decoding image...")
ae = ae.to(device)
with torch.no_grad():
if is_fp8(ae_dtype):
with accelerator.autocast():
x = ae.decode(x)
else:
with torch.autocast(device_type=device.type, dtype=ae_dtype):
x = ae.decode(x)
if args.offload:
ae = ae.cpu()
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
img = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
# save image
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, f"{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
img.save(output_path)
logger.info(f"Saved image to {output_path}")
if __name__ == "__main__":
target_height = 768 # 1024
target_width = 1360 # 1024
# steps = 50 # 28 # 50
# guidance_scale = 5
# seed = 1 # None # 1
device = get_preferred_device()
parser = argparse.ArgumentParser()
parser.add_argument("--lora_ups_num", type=int, required=True)
parser.add_argument("--lora_up_cur", type=int, required=True)
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--clip_l", type=str, required=False)
parser.add_argument("--t5xxl", type=str, required=False)
parser.add_argument("--ae", type=str, required=False)
parser.add_argument("--apply_t5_attn_mask", action="store_true")
parser.add_argument("--prompt", type=str, default="A photo of a cat")
parser.add_argument("--output_dir", type=str, default=".")
parser.add_argument("--dtype", type=str, default="bfloat16", help="base dtype")
parser.add_argument("--clip_l_dtype", type=str, default=None, help="dtype for clip_l")
parser.add_argument("--ae_dtype", type=str, default=None, help="dtype for ae")
parser.add_argument("--t5xxl_dtype", type=str, default=None, help="dtype for t5xxl")
parser.add_argument("--flux_dtype", type=str, default=None, help="dtype for flux")
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--steps", type=int, default=None, help="Number of steps. Default is 4 for schnell, 50 for dev")
parser.add_argument("--guidance", type=float, default=3.5)
parser.add_argument("--negative_prompt", type=str, default=None)
parser.add_argument("--cfg_scale", type=float, default=1.0)
parser.add_argument("--offload", action="store_true", help="Offload to CPU")
parser.add_argument(
"--lora_weights",
type=str,
nargs="*",
default=[],
help="LoRA weights, only supports networks.lora_flux and lora_oft, each argument is a `path;multiplier` (semi-colon separated)",
)
parser.add_argument("--merge_lora_weights", action="store_true", help="Merge LoRA weights to model")
parser.add_argument("--width", type=int, default=target_width)
parser.add_argument("--height", type=int, default=target_height)
parser.add_argument("--interactive", action="store_true")
args = parser.parse_args()
seed = args.seed
steps = args.steps
guidance_scale = args.guidance
lora_ups_num = args.lora_ups_num
lora_up_cur = args.lora_up_cur
def is_fp8(dt):
return dt in [torch.float8_e4m3fn, torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz]
dtype = str_to_dtype(args.dtype)
clip_l_dtype = str_to_dtype(args.clip_l_dtype, dtype)
t5xxl_dtype = str_to_dtype(args.t5xxl_dtype, dtype)
ae_dtype = str_to_dtype(args.ae_dtype, dtype)
flux_dtype = str_to_dtype(args.flux_dtype, dtype)
logger.info(f"Dtypes for clip_l, t5xxl, ae, flux: {clip_l_dtype}, {t5xxl_dtype}, {ae_dtype}, {flux_dtype}")
loading_device = "cpu" if args.offload else device
use_fp8 = [is_fp8(d) for d in [dtype, clip_l_dtype, t5xxl_dtype, ae_dtype, flux_dtype]]
if any(use_fp8):
accelerator = accelerate.Accelerator(mixed_precision="bf16")
else:
accelerator = None
# load clip_l
logger.info(f"Loading clip_l from {args.clip_l}...")
clip_l = flux_utils.load_clip_l(args.clip_l, clip_l_dtype, loading_device)
clip_l.eval()
logger.info(f"Loading t5xxl from {args.t5xxl}...")
t5xxl = flux_utils.load_t5xxl(args.t5xxl, t5xxl_dtype, loading_device)
t5xxl.eval()
# if is_fp8(clip_l_dtype):
# clip_l = accelerator.prepare(clip_l)
# if is_fp8(t5xxl_dtype):
# t5xxl = accelerator.prepare(t5xxl)
# DiT
is_schnell, model = flux_utils.load_flow_model(args.ckpt_path, None, loading_device)
model.eval()
logger.info(f"Casting model to {flux_dtype}")
model.to(flux_dtype) # make sure model is dtype
# if is_fp8(flux_dtype):
# model = accelerator.prepare(model)
# if args.offload:
# model = model.to("cpu")
t5xxl_max_length = 256 if is_schnell else 512
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(t5xxl_max_length)
encoding_strategy = strategy_flux.FluxTextEncodingStrategy()
# AE
ae = flux_utils.load_ae(args.ae, ae_dtype, loading_device)
ae.eval()
# if is_fp8(ae_dtype):
# ae = accelerator.prepare(ae)
# LoRA
lora_models: List[lora_flux.LoRANetwork] = []
for weights_file in args.lora_weights:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(multiplier)
else:
multiplier = 1.0
weights_sd = load_file(weights_file)
is_lora = is_oft = False
for key in weights_sd.keys():
if key.startswith("lora"):
is_lora = True
if key.startswith("oft"):
is_oft = True
if is_lora or is_oft:
break
module = lora_flux if is_lora else oft_flux
lora_model, _ = module.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd, True, lora_ups_num)
for sub_lora in lora_model.unet_loras:
sub_lora.set_lora_up_cur(lora_up_cur-1)
if args.merge_lora_weights:
lora_model.merge_to([clip_l, t5xxl], model, weights_sd)
else:
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {weights_file}: {info}")
lora_model.eval()
lora_model.to(device)
lora_models.append(lora_model)
if not args.interactive:
generate_image(
model,
clip_l,
t5xxl,
ae,
args.prompt,
args.seed,
args.width,
args.height,
args.steps,
args.guidance,
args.negative_prompt,
args.cfg_scale,
)
else:
# loop for interactive
width = target_width
height = target_height
steps = None
guidance = args.guidance
cfg_scale = args.cfg_scale
while True:
print(
"Enter prompt (empty to exit). Options: --w <width> --h <height> --s <steps> --d <seed> --g <guidance> --m <multipliers for LoRA>"
" --n <negative prompt>, `-` for empty negative prompt --c <cfg_scale>"
)
prompt = input()
if prompt == "":
break
# parse options
options = prompt.split("--")
prompt = options[0].strip()
seed = None
negative_prompt = None
for opt in options[1:]:
try:
opt = opt.strip()
if opt.startswith("w"):
width = int(opt[1:].strip())
elif opt.startswith("h"):
height = int(opt[1:].strip())
elif opt.startswith("s"):
steps = int(opt[1:].strip())
elif opt.startswith("d"):
seed = int(opt[1:].strip())
elif opt.startswith("g"):
guidance = float(opt[1:].strip())
elif opt.startswith("m"):
mutipliers = opt[1:].strip().split(",")
if len(mutipliers) != len(lora_models):
logger.error(f"Invalid number of multipliers, expected {len(lora_models)}")
continue
for i, lora_model in enumerate(lora_models):
lora_model.set_multiplier(float(mutipliers[i]))
elif opt.startswith("n"):
negative_prompt = opt[1:].strip()
if negative_prompt == "-":
negative_prompt = ""
elif opt.startswith("c"):
cfg_scale = float(opt[1:].strip())
except ValueError as e:
logger.error(f"Invalid option: {opt}, {e}")
generate_image(model, clip_l, t5xxl, ae, prompt, seed, width, height, steps, guidance, negative_prompt, cfg_scale)
logger.info("Done!")
|