Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,948 Bytes
abd09b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
import argparse
import math
import os
import numpy as np
import toml
import json
import time
from typing import Callable, Dict, List, Optional, Tuple, Union
import pdb
import torch
from accelerate import Accelerator, PartialState
from transformers import CLIPTextModel
from tqdm import tqdm
from PIL import Image
from safetensors.torch import save_file
from library import flux_models, flux_utils, strategy_base, train_util
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from .utils import setup_logging, mem_eff_save_file
setup_logging()
import logging
logger = logging.getLogger(__name__)
# region sample images
def sample_images(
accelerator: Accelerator,
args: argparse.Namespace,
epoch,
steps,
flux,
ae,
text_encoders,
sample_prompts_te_outputs,
prompt_replacement=None,
sample_images_ae_outputs=None
):
if steps == 0:
if not args.sample_at_first:
return
else:
if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
return
if args.sample_every_n_epochs is not None:
# sample_every_n_steps は無視する
if epoch is None or epoch % args.sample_every_n_epochs != 0:
return
else:
if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch
return
logger.info("")
logger.info(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
if not os.path.isfile(args.sample_prompts) and sample_prompts_te_outputs is None:
logger.error(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
return
distributed_state = PartialState() # for multi gpu distributed inference. this is a singleton, so it's safe to use it here
# unwrap unet and text_encoder(s)
flux = accelerator.unwrap_model(flux)
if text_encoders is not None:
text_encoders = [accelerator.unwrap_model(te) for te in text_encoders]
# print([(te.parameters().__next__().device if te is not None else None) for te in text_encoders])
prompts = train_util.load_prompts(args.sample_prompts)
save_dir = args.output_dir + "/sample"
os.makedirs(save_dir, exist_ok=True)
# save random state to restore later
rng_state = torch.get_rng_state()
cuda_rng_state = None
try:
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
except Exception:
pass
if distributed_state.num_processes <= 1:
# If only one device is available, just use the original prompt list. We don't need to care about the distribution of prompts.
with torch.no_grad(), accelerator.autocast():
for prompt_dict in prompts:
sample_image_inference(
accelerator,
args,
flux,
text_encoders,
ae,
save_dir,
prompt_dict,
epoch,
steps,
sample_prompts_te_outputs,
prompt_replacement,
sample_images_ae_outputs
)
else:
# Creating list with N elements, where each element is a list of prompt_dicts, and N is the number of processes available (number of devices available)
# prompt_dicts are assigned to lists based on order of processes, to attempt to time the image creation time to match enum order. Probably only works when steps and sampler are identical.
per_process_prompts = [] # list of lists
for i in range(distributed_state.num_processes):
per_process_prompts.append(prompts[i :: distributed_state.num_processes])
with torch.no_grad():
with distributed_state.split_between_processes(per_process_prompts) as prompt_dict_lists:
for prompt_dict in prompt_dict_lists[0]:
sample_image_inference(
accelerator,
args,
flux,
text_encoders,
ae,
save_dir,
prompt_dict,
epoch,
steps,
sample_prompts_te_outputs,
prompt_replacement,
sample_images_ae_outputs
)
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
clean_memory_on_device(accelerator.device)
def sample_image_inference(
accelerator: Accelerator,
args: argparse.Namespace,
flux: flux_models.Flux,
text_encoders: Optional[List[CLIPTextModel]],
ae: flux_models.AutoEncoder,
save_dir,
prompt_dict,
epoch,
steps,
sample_prompts_te_outputs,
prompt_replacement,
sample_images_ae_outputs
):
assert isinstance(prompt_dict, dict)
# negative_prompt = prompt_dict.get("negative_prompt")
sample_steps = prompt_dict.get("sample_steps", 20)
width = prompt_dict.get("width", 1024) if args.frame_num==4 else prompt_dict.get("width", 1056)
height = prompt_dict.get("height", 1024) if args.frame_num==4 else prompt_dict.get("height", 1056)
scale = prompt_dict.get("scale", 1.0)
seed = prompt_dict.get("seed")
# controlnet_image = prompt_dict.get("controlnet_image")
prompt: str = prompt_dict.get("prompt", "")
# sampler_name: str = prompt_dict.get("sample_sampler", args.sample_sampler)
if prompt_replacement is not None:
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
# if negative_prompt is not None:
# negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
else:
# True random sample image generation
torch.seed()
torch.cuda.seed()
# if negative_prompt is None:
# negative_prompt = ""
height = max(64, height - height % 16) # round to divisible by 16
width = max(64, width - width % 16) # round to divisible by 16
logger.info(f"prompt: {prompt}")
# logger.info(f"negative_prompt: {negative_prompt}")
logger.info(f"height: {height}")
logger.info(f"width: {width}")
logger.info(f"sample_steps: {sample_steps}")
logger.info(f"scale: {scale}")
# logger.info(f"sample_sampler: {sampler_name}")
if seed is not None:
logger.info(f"seed: {seed}")
# encode prompts
tokenize_strategy = strategy_base.TokenizeStrategy.get_strategy()
encoding_strategy = strategy_base.TextEncodingStrategy.get_strategy()
text_encoder_conds = []
if sample_prompts_te_outputs and prompt in sample_prompts_te_outputs:
text_encoder_conds = sample_prompts_te_outputs[prompt]
print(f"Using cached text encoder outputs for prompt: {prompt}")
if text_encoders is not None:
print(f"Encoding prompt: {prompt}")
tokens_and_masks = tokenize_strategy.tokenize(prompt)
# strategy has apply_t5_attn_mask option
encoded_text_encoder_conds = encoding_strategy.encode_tokens(tokenize_strategy, text_encoders, tokens_and_masks)
# if text_encoder_conds is not cached, use encoded_text_encoder_conds
if len(text_encoder_conds) == 0:
text_encoder_conds = encoded_text_encoder_conds
else:
# if encoded_text_encoder_conds is not None, update cached text_encoder_conds
for i in range(len(encoded_text_encoder_conds)):
if encoded_text_encoder_conds[i] is not None:
text_encoder_conds[i] = encoded_text_encoder_conds[i]
if sample_images_ae_outputs and prompt in sample_images_ae_outputs:
ae_outputs = sample_images_ae_outputs[prompt]
else:
ae_outputs = None
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
# sample image
weight_dtype = ae.dtype # TOFO give dtype as argument
packed_latent_height = height // 16
packed_latent_width = width // 16
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=accelerator.device,
dtype=weight_dtype,
generator=torch.Generator(device=accelerator.device).manual_seed(seed) if seed is not None else None,
)
timesteps = get_schedule(sample_steps, noise.shape[1], shift=True) # FLUX.1 dev -> shift=True
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(accelerator.device, weight_dtype)
t5_attn_mask = t5_attn_mask.to(accelerator.device) if args.apply_t5_attn_mask else None
with accelerator.autocast(), torch.no_grad():
x = denoise(args, flux, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=scale, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs)
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
# latent to image
clean_memory_on_device(accelerator.device)
org_vae_device = ae.device # will be on cpu
ae.to(accelerator.device) # distributed_state.device is same as accelerator.device
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
ae.to(org_vae_device)
clean_memory_on_device(accelerator.device)
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
# adding accelerator.wait_for_everyone() here should sync up and ensure that sample images are saved in the same order as the original prompt list
# but adding 'enum' to the filename should be enough
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
seed_suffix = "" if seed is None else f"_{seed}"
i: int = prompt_dict["enum"]
img_filename = f"{'' if args.output_name is None else args.output_name + '_'}{num_suffix}_{i:02d}_{ts_str}{seed_suffix}.png"
image.save(os.path.join(save_dir, img_filename))
# send images to wandb if enabled
if "wandb" in [tracker.name for tracker in accelerator.trackers]:
wandb_tracker = accelerator.get_tracker("wandb")
import wandb
# not to commit images to avoid inconsistency between training and logging steps
wandb_tracker.log(
{f"sample_{i}": wandb.Image(
image,
caption=prompt # positive prompt as a caption
)},
commit=False
)
def time_shift(mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
args: argparse.Namespace,
model: flux_models.Flux,
img: torch.Tensor,
img_ids: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
vec: torch.Tensor,
timesteps: list[float],
guidance: float = 4.0,
t5_attn_mask: Optional[torch.Tensor] = None,
ae_outputs: torch.Tensor = None,
):
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
img_ids = img_ids.to(img.device)
txt_ids = txt_ids.to(img.device)
vec = vec.to(img.device)
txt = txt.to(img.device)
for t_curr, t_prev in zip(tqdm(timesteps[:-1]), timesteps[1:]):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
model.prepare_block_swap_before_forward()
if args.frame_num == 4:
packed_latent_height, packed_latent_width = ae_outputs.shape[2]*2 // 2, ae_outputs.shape[3]*2 // 2
img = flux_utils.unpack_latents(img, packed_latent_height, packed_latent_width)
img[:,:, img.shape[2] // 2: img.shape[2], :img.shape[3] // 2] = ae_outputs
else:
packed_latent_height, packed_latent_width = ae_outputs.shape[2]*3 // 2, ae_outputs.shape[3]*3 // 2
img = flux_utils.unpack_latents(img, packed_latent_height, packed_latent_width)
img[:,:, 2*img.shape[2] // 3: img.shape[2], 2*img.shape[3] // 3:img.shape[3]] = ae_outputs
img = flux_utils.pack_latents(img)
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
img = img + (t_prev - t_curr) * pred
model.prepare_block_swap_before_forward()
return img
# endregion
# region train
def get_sigmas(noise_scheduler, timesteps, device, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = noise_scheduler.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
"""Compute the density for sampling the timesteps when doing SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def compute_loss_weighting_for_sd3(weighting_scheme: str, sigmas=None):
"""Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
return weighting
def get_noisy_model_input_and_timesteps(
args, noise_scheduler, latents, noise, device, dtype
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
bsz, _, h, w = latents.shape
sigmas = None
if args.timestep_sampling == "uniform" or args.timestep_sampling == "sigmoid":
# Simple random t-based noise sampling
if args.timestep_sampling == "sigmoid":
# https://github.com/XLabs-AI/x-flux/tree/main
t = torch.sigmoid(args.sigmoid_scale * torch.randn((bsz,), device=device))
else:
t = torch.rand((bsz,), device=device)
timesteps = t * 1000.0
t = t.view(-1, 1, 1, 1)
noisy_model_input = (1 - t) * latents + t * noise
elif args.timestep_sampling == "shift":
shift = args.discrete_flow_shift
logits_norm = torch.randn(bsz, device=device)
logits_norm = logits_norm * args.sigmoid_scale # larger scale for more uniform sampling
timesteps = logits_norm.sigmoid()
timesteps = (timesteps * shift) / (1 + (shift - 1) * timesteps)
t = timesteps.view(-1, 1, 1, 1)
timesteps = timesteps * 1000.0
noisy_model_input = (1 - t) * latents + t * noise
elif args.timestep_sampling == "flux_shift":
logits_norm = torch.randn(bsz, device=device)
logits_norm = logits_norm * args.sigmoid_scale # larger scale for more uniform sampling
timesteps = logits_norm.sigmoid()
mu = get_lin_function(y1=0.5, y2=1.15)((h // 2) * (w // 2))
timesteps = time_shift(mu, 1.0, timesteps)
t = timesteps.view(-1, 1, 1, 1)
timesteps = timesteps * 1000.0
noisy_model_input = (1 - t) * latents + t * noise
else:
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
u = compute_density_for_timestep_sampling(
weighting_scheme=args.weighting_scheme,
batch_size=bsz,
logit_mean=args.logit_mean,
logit_std=args.logit_std,
mode_scale=args.mode_scale,
)
indices = (u * noise_scheduler.config.num_train_timesteps).long()
timesteps = noise_scheduler.timesteps[indices].to(device=device)
# Add noise according to flow matching.
sigmas = get_sigmas(noise_scheduler, timesteps, device, n_dim=latents.ndim, dtype=dtype)
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents
# 替换部分区域为原始latents
h, w = noisy_model_input.shape[2], noisy_model_input.shape[3]
# import pdb; pdb.set_trace()
if args.frame_num == 4:
noisy_model_input[:, :, h//2 : h, w//2 : w] = latents[:, :, h//2:h, w//2:w]
else:
noisy_model_input[:, :, 2*h//3 : h, 2*w//3 : w] = latents[:, :, 2*h//3:h, 2*w//3:w]
return noisy_model_input, timesteps, sigmas
def apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas):
weighting = None
if args.model_prediction_type == "raw":
pass
elif args.model_prediction_type == "additive":
# add the model_pred to the noisy_model_input
model_pred = model_pred + noisy_model_input
elif args.model_prediction_type == "sigma_scaled":
# apply sigma scaling
model_pred = model_pred * (-sigmas) + noisy_model_input
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas)
return model_pred, weighting
def save_models(
ckpt_path: str,
flux: flux_models.Flux,
sai_metadata: Optional[dict],
save_dtype: Optional[torch.dtype] = None,
use_mem_eff_save: bool = False,
):
state_dict = {}
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
if save_dtype is not None and v.dtype != save_dtype:
v = v.detach().clone().to("cpu").to(save_dtype)
state_dict[key] = v
update_sd("", flux.state_dict())
if not use_mem_eff_save:
save_file(state_dict, ckpt_path, metadata=sai_metadata)
else:
mem_eff_save_file(state_dict, ckpt_path, metadata=sai_metadata)
def save_flux_model_on_train_end(
args: argparse.Namespace, save_dtype: torch.dtype, epoch: int, global_step: int, flux: flux_models.Flux
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True, flux="dev")
save_models(ckpt_file, flux, sai_metadata, save_dtype, args.mem_eff_save)
train_util.save_sd_model_on_train_end_common(args, True, True, epoch, global_step, sd_saver, None)
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_flux_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
flux: flux_models.Flux,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, False, False, False, is_stable_diffusion_ckpt=True, flux="dev")
save_models(ckpt_file, flux, sai_metadata, save_dtype, args.mem_eff_save)
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
True,
True,
epoch,
num_train_epochs,
global_step,
sd_saver,
None,
)
# endregion
def add_flux_train_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--clip_l",
type=str,
help="path to clip_l (*.sft or *.safetensors), should be float16 / clip_lのパス(*.sftまたは*.safetensors)、float16が前提",
)
parser.add_argument(
"--t5xxl",
type=str,
help="path to t5xxl (*.sft or *.safetensors), should be float16 / t5xxlのパス(*.sftまたは*.safetensors)、float16が前提",
)
parser.add_argument("--ae", type=str, help="path to ae (*.sft or *.safetensors) / aeのパス(*.sftまたは*.safetensors)")
parser.add_argument(
"--t5xxl_max_token_length",
type=int,
default=None,
help="maximum token length for T5-XXL. if omitted, 256 for schnell and 512 for dev"
" / T5-XXLの最大トークン長。省略された場合、schnellの場合は256、devの場合は512",
)
parser.add_argument(
"--apply_t5_attn_mask",
action="store_true",
help="apply attention mask to T5-XXL encode and FLUX double blocks / T5-XXLエンコードとFLUXダブルブロックにアテンションマスクを適用する",
)
parser.add_argument(
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
)
parser.add_argument(
"--cache_text_encoder_outputs_to_disk",
action="store_true",
help="cache text encoder outputs to disk / text encoderの出力をディスクにキャッシュする",
)
parser.add_argument(
"--text_encoder_batch_size",
type=int,
default=None,
help="text encoder batch size (default: None, use dataset's batch size)"
+ " / text encoderのバッチサイズ(デフォルト: None, データセットのバッチサイズを使用)",
)
parser.add_argument(
"--disable_mmap_load_safetensors",
action="store_true",
help="disable mmap load for safetensors. Speed up model loading in WSL environment / safetensorsのmmapロードを無効にする。WSL環境等でモデル読み込みを高速化できる",
)
# copy from Diffusers
parser.add_argument(
"--weighting_scheme",
type=str,
default="none",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
)
parser.add_argument(
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument("--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme.")
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3.5,
help="the FLUX.1 dev variant is a guidance distilled model",
)
parser.add_argument(
"--timestep_sampling",
choices=["sigma", "uniform", "sigmoid", "shift", "flux_shift"],
default="sigma",
help="Method to sample timesteps: sigma-based, uniform random, sigmoid of random normal, shift of sigmoid and FLUX.1 shifting."
" / タイムステップをサンプリングする方法:sigma、random uniform、random normalのsigmoid、sigmoidのシフト、FLUX.1のシフト。",
)
parser.add_argument(
"--sigmoid_scale",
type=float,
default=1.0,
help='Scale factor for sigmoid timestep sampling (only used when timestep-sampling is "sigmoid"). / sigmoidタイムステップサンプリングの倍率(timestep-samplingが"sigmoid"の場合のみ有効)。',
)
parser.add_argument(
"--model_prediction_type",
choices=["raw", "additive", "sigma_scaled"],
default="sigma_scaled",
help="How to interpret and process the model prediction: "
"raw (use as is), additive (add to noisy input), sigma_scaled (apply sigma scaling)."
" / モデル予測の解釈と処理方法:"
"raw(そのまま使用)、additive(ノイズ入力に加算)、sigma_scaled(シグマスケーリングを適用)。",
)
parser.add_argument(
"--discrete_flow_shift",
type=float,
default=3.0,
help="Discrete flow shift for the Euler Discrete Scheduler, default is 3.0. / Euler Discrete Schedulerの離散フローシフト、デフォルトは3.0。",
)
|