MakeAnything / gradio_app.py
yiren98's picture
Upload 17 files
36ed92b verified
raw
history blame
8.33 kB
import gradio as gr
import torch
import numpy as np
import random
from PIL import Image
from accelerate import Accelerator
import os
import time
from torchvision import transforms
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_utils, flux_train_utils_recraft as flux_train_utils, strategy_flux
import logging
# Set up logger
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG)
# Ensure necessary devices are available
device = "cuda" if torch.cuda.is_available() else "cpu"
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
# Model paths (replace these with your actual model paths)
BASE_FLUX_CHECKPOINT="/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/MergeModel/6_Portrait/6_Portrait.safetensors"
LORA_WEIGHTS_PATH="/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/RecraftModel/6_Portrait/6_Portrait-step00025000.safetensors"
CLIP_L_PATH="/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/clip_l.safetensors"
T5XXL_PATH="/tiamat-NAS/hailong/storage_backup/models/stabilityai/stable-diffusion-3-medium/text_encoders/t5xxl_fp16.safetensors"
AE_PATH="/tiamat-vePFS/share_data/storage/huggingface/models/black-forest-labs/FLUX.1-dev/ae.safetensors"
# Load model function
def load_target_model():
logger.info("Loading models...")
try:
_, model = flux_utils.load_flow_model(
BASE_FLUX_CHECKPOINT, torch.float8_e4m3fn, "cpu", disable_mmap=False
)
clip_l = flux_utils.load_clip_l(CLIP_L_PATH, torch.bfloat16, "cpu", disable_mmap=False)
clip_l.eval()
t5xxl = flux_utils.load_t5xxl(T5XXL_PATH, torch.bfloat16, "cpu", disable_mmap=False)
t5xxl.eval()
ae = flux_utils.load_ae(AE_PATH, torch.bfloat16, "cpu", disable_mmap=False)
logger.info("Models loaded successfully.")
return model, [clip_l, t5xxl], ae
except Exception as e:
logger.error(f"Error loading models: {e}")
raise
# Image pre-processing (resize and padding)
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
if width == height:
img = img.resize((self.size, self.size), Image.LANCZOS)
else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
# The function to generate image from a prompt and conditional image
def infer(prompt, sample_image, frame_num, seed=0, randomize_seed=False):
logger.info(f"Started generating image with prompt: {prompt}")
# Load models
model, [clip_l, t5xxl], ae = load_target_model()
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# LoRA
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
True)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
lora_model.to("cuda")
# Process the seed
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
logger.debug(f"Using seed: {seed}")
# Preprocess the conditional image
resize_transform = ResizeWithPadding(size=512) if frame_num == 4 else ResizeWithPadding(size=352)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
image = img_transforms(np.array(sample_image, dtype=np.uint8)).unsqueeze(0).to(
device=device,
dtype=torch.bfloat16
)
logger.debug("Conditional image preprocessed.")
# Encode the image to latents
ae.to("cuda")
latents = ae.encode(image)
logger.debug("Image encoded to latents.")
conditions = {}
conditions[prompt] = latents.to("cpu")
ae.to("cpu")
clip_l.to("cuda")
t5xxl.to("cuda")
# Encode the prompt
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
tokens_and_masks = tokenize_strategy.tokenize(prompt)
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoding_strategy.encode_tokens(tokenize_strategy, [clip_l, t5xxl], tokens_and_masks, True)
logger.debug("Prompt encoded.")
# Prepare the noise and other parameters
width = 1024 if frame_num == 4 else 1056
height = 1024 if frame_num == 4 else 1056
height = max(64, height - height % 16)
width = max(64, width - width % 16)
packed_latent_height = height // 16
packed_latent_width = width // 16
noise = torch.randn(1, packed_latent_height * packed_latent_width, 16 * 2 * 2, device=device, dtype=torch.float16)
logger.debug("Noise prepared.")
# Generate the image
timesteps = flux_train_utils.get_schedule(20, noise.shape[1], shift=True) # Sample steps = 20
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(device)
t5_attn_mask = t5_attn_mask.to(device)
ae_outputs = conditions[prompt]
logger.debug("Image generation parameters set.")
args = lambda: None
args.frame_num = frame_num
clip_l.to("cpu")
t5xxl.to("cpu")
torch.cuda.empty_cache()
model.to("cuda")
# import pdb
# pdb.set_trace()
# Run the denoising process
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(
args, model, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps, guidance=1.0, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs
)
logger.debug("Denoising process completed.")
# Decode the final image
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
model.to("cpu")
ae.to("cuda")
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
logger.debug("Latents decoded into image.")
ae.to("cpu")
# Convert the tensor to an image
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
generated_image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
logger.info("Image generation completed.")
return generated_image
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## FLUX Image Generation")
with gr.Row():
# Input for the prompt
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=1)
# File upload for image
sample_image = gr.Image(label="Upload a Conditional Image", type="pil")
# Frame number selection
frame_num = gr.Radio([4, 9], label="Select Frame Number", value=4)
# Seed and randomize seed options
seed = gr.Slider(0, np.iinfo(np.int32).max, step=1, label="Seed", value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
# Run Button
run_button = gr.Button("Generate Image")
# Output result
result_image = gr.Image(label="Generated Image")
run_button.click(
fn=infer,
inputs=[prompt, sample_image, frame_num, seed, randomize_seed],
outputs=[result_image]
)
# Launch the Gradio app
demo.launch(server_port=8289, server_name="0.0.0.0", share=True)
# prompt = "1girl"
# sample_image = Image.open("/tiamat-NAS/songyiren/FYP/liucheng/sd-scripts/MergeModel/test/1.png") # 使用一个测试图像
# frame_num = 9
# seed = 42
# randomize_seed = False
# result = infer(prompt, sample_image, frame_num, seed, randomize_seed)
# result.save('asy_results/generated_image.png')