MakeAnything / flux_train_recraft.py
yiren98's picture
Upload 17 files
36ed92b verified
raw
history blame
33.1 kB
import argparse
import copy
import math
import random
from typing import Any
import pdb
import torch
from accelerate import Accelerator
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
from library import flux_models, flux_train_utils_recraft as flux_train_utils, flux_utils, sd3_train_utils, strategy_base, strategy_flux, train_util
from torchvision import transforms
import train_network
from library.utils import setup_logging
from diffusers.utils import load_image
import numpy as np
from PIL import Image, ImageOps
setup_logging()
import logging
logger = logging.getLogger(__name__)
# NUM_SPLIT = 2
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
if width == height:
img = img.resize((self.size, self.size), Image.LANCZOS)
else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
class FluxNetworkTrainer(train_network.NetworkTrainer):
def __init__(self):
super().__init__()
self.sample_prompts_te_outputs = None
self.sample_conditions = None
self.is_schnell: Optional[bool] = None
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
# sdxl_train_util.verify_sdxl_training_args(args)
if args.fp8_base_unet:
args.fp8_base = True # if fp8_base_unet is enabled, fp8_base is also enabled for FLUX.1
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# prepare CLIP-L/T5XXL training flags
self.train_clip_l = not args.network_train_unet_only
self.train_t5xxl = False # default is False even if args.network_train_unet_only is False
if args.max_token_length is not None:
logger.warning("max_token_length is not used in Flux training / max_token_lengthはFluxのトレーニングでは使用されません")
assert not args.split_mode or not args.cpu_offload_checkpointing, (
"split_mode and cpu_offload_checkpointing cannot be used together"
" / split_modeとcpu_offload_checkpointingは同時に使用できません"
)
train_dataset_group.verify_bucket_reso_steps(32) # TODO check this
def load_target_model(self, args, weight_dtype, accelerator):
# currently offload to cpu for some models
# if the file is fp8 and we are using fp8_base, we can load it as is (fp8)
loading_dtype = None if args.fp8_base else weight_dtype
# if we load to cpu, flux.to(fp8) takes a long time, so we should load to gpu in future
self.is_schnell, model = flux_utils.load_flow_model(
args.pretrained_model_name_or_path, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors
)
if args.fp8_base:
# check dtype of model
if model.dtype == torch.float8_e4m3fnuz or model.dtype == torch.float8_e5m2 or model.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 FLUX model")
if args.split_mode:
model = self.prepare_split_model(model, weight_dtype, accelerator)
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
clip_l.eval()
# if the file is fp8 and we are using fp8_base (not unet), we can load it as is (fp8)
if args.fp8_base and not args.fp8_base_unet:
loading_dtype = None # as is
else:
loading_dtype = weight_dtype
# loading t5xxl to cpu takes a long time, so we should load to gpu in future
t5xxl = flux_utils.load_t5xxl(args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
t5xxl.eval()
if args.fp8_base and not args.fp8_base_unet:
# check dtype of model
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
ae = flux_utils.load_ae(args.ae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
def prepare_split_model(self, model, weight_dtype, accelerator):
from accelerate import init_empty_weights
logger.info("prepare split model")
with init_empty_weights():
flux_upper = flux_models.FluxUpper(model.params)
flux_lower = flux_models.FluxLower(model.params)
sd = model.state_dict()
# lower (trainable)
logger.info("load state dict for lower")
flux_lower.load_state_dict(sd, strict=False, assign=True)
flux_lower.to(dtype=weight_dtype)
# upper (frozen)
logger.info("load state dict for upper")
flux_upper.load_state_dict(sd, strict=False, assign=True)
logger.info("prepare upper model")
target_dtype = torch.float8_e4m3fn if args.fp8_base else weight_dtype
flux_upper.to(accelerator.device, dtype=target_dtype)
flux_upper.eval()
if args.fp8_base:
# this is required to run on fp8
flux_upper = accelerator.prepare(flux_upper)
flux_upper.to("cpu")
self.flux_upper = flux_upper
del model # we don't need model anymore
clean_memory_on_device(accelerator.device)
logger.info("split model prepared")
return flux_lower
def get_tokenize_strategy(self, args):
_, is_schnell, _, _ = flux_utils.analyze_checkpoint_state(args.pretrained_model_name_or_path)
if args.t5xxl_max_token_length is None:
if is_schnell:
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
logger.info(f"t5xxl_max_token_length: {t5xxl_max_token_length}")
return strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_flux.FluxTokenizeStrategy):
return [tokenize_strategy.clip_l, tokenize_strategy.t5xxl]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(args.cache_latents_to_disk, args.vae_batch_size, False)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_flux.FluxTextEncodingStrategy(apply_t5_attn_mask=args.apply_t5_attn_mask)
def post_process_network(self, args, accelerator, network, text_encoders, unet):
# check t5xxl is trained or not
self.train_t5xxl = network.train_t5xxl
if self.train_t5xxl and args.cache_text_encoder_outputs:
raise ValueError(
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません"
)
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
if args.cache_text_encoder_outputs:
if self.train_clip_l and not self.train_t5xxl:
return text_encoders[0:1] # only CLIP-L is needed for encoding because T5XXL is cached
else:
return None # no text encoders are needed for encoding because both are cached
else:
return text_encoders # both CLIP-L and T5XXL are needed for encoding
def get_text_encoders_train_flags(self, args, text_encoders):
return [self.train_clip_l, self.train_t5xxl]
def get_text_encoder_outputs_caching_strategy(self, args):
if args.cache_text_encoder_outputs:
# if the text encoders is trained, we need tokenization, so is_partial is True
return strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk,
args.text_encoder_batch_size,
args.skip_cache_check,
is_partial=self.train_clip_l or self.train_t5xxl,
apply_t5_attn_mask=args.apply_t5_attn_mask,
)
else:
return None
def cache_text_encoder_outputs_if_needed(
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# メモリ消費を減らす
logger.info("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
clean_memory_on_device(accelerator.device)
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
logger.info("move text encoders to gpu")
text_encoders[0].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[1].to(accelerator.device)
if text_encoders[1].dtype == torch.float8_e4m3fn:
# if we load fp8 weights, the model is already fp8, so we use it as is
self.prepare_text_encoder_fp8(1, text_encoders[1], text_encoders[1].dtype, weight_dtype)
else:
# otherwise, we need to convert it to target dtype
text_encoders[1].to(weight_dtype)
with accelerator.autocast():
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator)
# cache sample prompts
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
tokenize_strategy: strategy_flux.FluxTokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy()
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = train_util.load_prompts(args.sample_prompts)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoders, tokens_and_masks, args.apply_t5_attn_mask
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
# 添加conditions缓存逻辑
if args.sample_images is not None:
logger.info(f"cache conditions for sample images: {args.sample_images}")
# lc03lc
resize_transform = ResizeWithPadding(size=512, fill=255) if args.frame_num == 4 else ResizeWithPadding(size=352, fill=255)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
if args.sample_images.endswith(".txt"):
with open(args.sample_images, "r", encoding="utf-8") as f:
lines = f.readlines()
sample_images = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
else:
raise NotImplementedError(f"sample_images file format not supported: {args.sample_images}")
prompts = train_util.load_prompts(args.sample_prompts)
conditions = {} # key: prompt, value: latents
with torch.no_grad():
for image, prompt_dict in zip(sample_images, prompts):
prompt = prompt_dict.get("prompt", "")
if prompt not in conditions:
logger.info(f"cache conditions for image: {image} with prompt: {prompt}")
image = img_transforms(np.array(load_image(image), dtype=np.uint8)).unsqueeze(0).to(vae.device, dtype=vae.dtype)
latents = self.encode_images_to_latents2(args, accelerator, vae, image)
# lc03lc
conditions[prompt] = latents
# if args.frame_num == 4:
# conditions[prompt] = latents[:,:,2*latents.shape[2]//3:latents.shape[2], 2*latents.shape[3]//3:latents.shape[3]].to("cpu")
# else:
# conditions[prompt] = latents[:,:,latents.shape[2]//2:latents.shape[2], :latents.shape[3]//2].to("cpu")
self.sample_conditions = conditions
accelerator.wait_for_everyone()
# move back to cpu
if not self.is_train_text_encoder(args):
logger.info("move CLIP-L back to cpu")
text_encoders[0].to("cpu")
logger.info("move t5XXL back to cpu")
text_encoders[1].to("cpu")
clean_memory_on_device(accelerator.device)
if not args.lowram:
logger.info("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoderから毎回出力を取得するので、GPUに乗せておく
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
text_encoders[1].to(accelerator.device)
# def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype):
# noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
# # get size embeddings
# orig_size = batch["original_sizes_hw"]
# crop_size = batch["crop_top_lefts"]
# target_size = batch["target_sizes_hw"]
# embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
# # concat embeddings
# encoder_hidden_states1, encoder_hidden_states2, pool2 = text_conds
# vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
# text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
# noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
# return noise_pred
def sample_images(self, accelerator, args, epoch, global_step, device, ae, tokenizer, text_encoder, flux):
text_encoders = text_encoder # for compatibility
text_encoders = self.get_models_for_text_encoding(args, accelerator, text_encoders)
# 直接使用预先计算的conditions
conditions = None
if self.sample_conditions is not None:
conditions = {k: v.to(accelerator.device) for k, v in self.sample_conditions.items()}
if not args.split_mode:
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, flux, ae, text_encoder, self.sample_prompts_te_outputs, None, conditions
)
return
class FluxUpperLowerWrapper(torch.nn.Module):
def __init__(self, flux_upper: flux_models.FluxUpper, flux_lower: flux_models.FluxLower, device: torch.device):
super().__init__()
self.flux_upper = flux_upper
self.flux_lower = flux_lower
self.target_device = device
def prepare_block_swap_before_forward(self):
pass
def forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None, txt_attention_mask=None):
self.flux_lower.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_upper.to(self.target_device)
img, txt, vec, pe = self.flux_upper(img, img_ids, txt, txt_ids, timesteps, y, guidance, txt_attention_mask)
self.flux_upper.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_lower.to(self.target_device)
return self.flux_lower(img, txt, vec, pe, txt_attention_mask)
wrapper = FluxUpperLowerWrapper(self.flux_upper, flux, accelerator.device)
clean_memory_on_device(accelerator.device)
flux_train_utils.sample_images(
accelerator, args, epoch, global_step, wrapper, ae, text_encoder, self.sample_prompts_te_outputs, conditions
)
clean_memory_on_device(accelerator.device)
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
self.noise_scheduler_copy = copy.deepcopy(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
# 获取图像尺寸
b, c, h, w = images.shape
# num_split = NUM_SPLIT
num_split = 2 if args.frame_num == 4 else 3
# 将图像分成三个部分
img_parts = [images[:,:,:,i*w//num_split:(i+1)*w//num_split] for i in range(num_split)]
# 分别编码
latents = [vae.encode(img) for img in img_parts]
# 在latent空间拼接回完整图像
latents = torch.cat(latents, dim=-1)
return latents
def encode_images_to_latents2(self, args, accelerator, vae, images):
# 获取图像尺寸
b, c, h, w = images.shape
# num_split = NUM_SPLIT
num_split = 2 if args.frame_num == 4 else 3
latents = vae.encode(images)
return latents
def encode_images_to_latents3(self, args, accelerator, vae, images):
b, c, h, w = images.shape
# Number of splits along each dimension
num_split = 3
# Check if the image can be evenly divided into 3x3 grid
assert h % num_split == 0 and w % num_split == 0, "Image dimensions must be divisible by 3."
# Height and width of each split
split_h, split_w = h // num_split, w // num_split
# Store latents for each split
latents = []
for i in range(num_split):
for j in range(num_split):
# Extract the (i, j) sub-image
img_part = images[:, :, i * split_h:(i + 1) * split_h, j * split_w:(j + 1) * split_w]
# Encode the sub-image using VAE
latent = vae.encode(img_part)
# Append the latent
latents.append(latent)
# Combine latents into a 3x3 grid in the latent space
# Latents list -> Tensor [num_split^2, b, latent_dim, h', w']
latents = torch.stack(latents, dim=0)
# Reshape into a 3x3 grid
# Shape: [num_split, num_split, b, latent_dim, h', w']
latents = latents.view(num_split, num_split, b, *latents.shape[2:])
# Combine the 3x3 grid along height and width in latent space
# Concatenate along width for each row, then concatenate rows along height
latents = torch.cat([torch.cat(latents[i], dim=-1) for i in range(num_split)], dim=-2)
# Final shape: [b, latent_dim, h', w']
return latents
def shift_scale_latents(self, args, latents):
return latents
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet: flux_models.Flux,
network,
weight_dtype,
train_unet,
):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
# yiren ? need modify?
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device)
# get guidance
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in text_encoder_conds:
if t is not None and t.dtype.is_floating_point:
t.requires_grad_(True)
img_ids.requires_grad_(True)
guidance_vec.requires_grad_(True)
# Predict the noise residual
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
def call_dit(img, img_ids, t5_out, txt_ids, l_pooled, timesteps, guidance_vec, t5_attn_mask):
if not args.split_mode:
# normal forward
with accelerator.autocast():
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = unet(
img=img,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
else:
# split forward to reduce memory usage
assert network.train_blocks == "single", "train_blocks must be single for split mode"
with accelerator.autocast():
# move flux lower to cpu, and then move flux upper to gpu
unet.to("cpu")
clean_memory_on_device(accelerator.device)
self.flux_upper.to(accelerator.device)
# upper model does not require grad
with torch.no_grad():
intermediate_img, intermediate_txt, vec, pe = self.flux_upper(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# move flux upper back to cpu, and then move flux lower to gpu
self.flux_upper.to("cpu")
clean_memory_on_device(accelerator.device)
unet.to(accelerator.device)
# lower model requires grad
intermediate_img.requires_grad_(True)
intermediate_txt.requires_grad_(True)
vec.requires_grad_(True)
pe.requires_grad_(True)
model_pred = unet(img=intermediate_img, txt=intermediate_txt, vec=vec, pe=pe, txt_attention_mask=t5_attn_mask)
return model_pred
model_pred = call_dit(
img=packed_noisy_model_input,
img_ids=img_ids,
t5_out=t5_out,
txt_ids=txt_ids,
l_pooled=l_pooled,
timesteps=timesteps,
guidance_vec=guidance_vec,
t5_attn_mask=t5_attn_mask,
)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
# differential output preservation
if "custom_attributes" in batch:
diff_output_pr_indices = []
for i, custom_attributes in enumerate(batch["custom_attributes"]):
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]:
diff_output_pr_indices.append(i)
if len(diff_output_pr_indices) > 0:
network.set_multiplier(0.0)
with torch.no_grad():
model_pred_prior = call_dit(
img=packed_noisy_model_input[diff_output_pr_indices],
img_ids=img_ids[diff_output_pr_indices],
t5_out=t5_out[diff_output_pr_indices],
txt_ids=txt_ids[diff_output_pr_indices],
l_pooled=l_pooled[diff_output_pr_indices],
timesteps=timesteps[diff_output_pr_indices],
guidance_vec=guidance_vec[diff_output_pr_indices] if guidance_vec is not None else None,
t5_attn_mask=t5_attn_mask[diff_output_pr_indices] if t5_attn_mask is not None else None,
)
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step
model_pred_prior = flux_utils.unpack_latents(model_pred_prior, packed_latent_height, packed_latent_width)
model_pred_prior, _ = flux_train_utils.apply_model_prediction_type(
args,
model_pred_prior,
noisy_model_input[diff_output_pr_indices],
sigmas[diff_output_pr_indices] if sigmas is not None else None,
)
target[diff_output_pr_indices] = model_pred_prior.to(target.dtype)
# elimilate the loss in the left top quarter of the image
h, w = target.shape[2], target.shape[3]
# num_split = NUM_SPLIT
num_split = 2 if args.frame_num == 4 else 3
# target[:, :, :, :w//num_split] = model_pred[:, :, :, :w//num_split]
# target[:, :, :, :w//num_split] = model_pred[:, :, :, :w//num_split]
target[:, :, 2*h//num_split:h, 2*w//num_split:w] = model_pred[:, :, 2*h//num_split:h, 2*w//num_split:w]
return model_pred, target, timesteps, None, weighting
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, False, True, False, flux="dev")
def update_metadata(self, metadata, args):
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask
metadata["ss_weighting_scheme"] = args.weighting_scheme
metadata["ss_logit_mean"] = args.logit_mean
metadata["ss_logit_std"] = args.logit_std
metadata["ss_mode_scale"] = args.mode_scale
metadata["ss_guidance_scale"] = args.guidance_scale
metadata["ss_timestep_sampling"] = args.timestep_sampling
metadata["ss_sigmoid_scale"] = args.sigmoid_scale
metadata["ss_model_prediction_type"] = args.model_prediction_type
metadata["ss_discrete_flow_shift"] = args.discrete_flow_shift
def is_text_encoder_not_needed_for_training(self, args):
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args)
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
if index == 0: # CLIP-L
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder)
else: # T5XXL
text_encoder.encoder.embed_tokens.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
if index == 0: # CLIP-L
logger.info(f"prepare CLIP-L for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}")
text_encoder.to(te_weight_dtype) # fp8
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
else: # T5XXL
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype:
logger.info(f"T5XXL already prepared for fp8")
else:
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks")
text_encoder.to(te_weight_dtype) # fp8
prepare_fp8(text_encoder, weight_dtype)
def setup_parser() -> argparse.ArgumentParser:
parser = train_network.setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--split_mode",
action="store_true",
help="[EXPERIMENTAL] use split mode for Flux model, network arg `train_blocks=single` is required"
+ "/[実験的] Fluxモデルの分割モードを使用する。ネットワーク引数`train_blocks=single`が必要",
)
parser.add_argument(
'--frame_num',
type=int,
choices=[4, 9],
required=True,
help="The number of steps in the generated step diagram (choose 4 or 9)"
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = FluxNetworkTrainer()
trainer.train(args)