MakeAnything / networks /flux_merge_lora.py
yiren98's picture
Upload 98 files
abd09b6 verified
raw
history blame
33.2 kB
import argparse
import math
import os
import time
from typing import Any, Dict, Union
import torch
from safetensors import safe_open
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library.utils import setup_logging, str_to_dtype, MemoryEfficientSafeOpen, mem_eff_save_file
setup_logging()
import logging
logger = logging.getLogger(__name__)
import lora_flux as lora_flux
from library import sai_model_spec, train_util
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, state_dict: Dict[str, Union[Any, torch.Tensor]], dtype, metadata, mem_eff_save=False):
if dtype is not None:
logger.info(f"converting to {dtype}...")
for key in tqdm(list(state_dict.keys())):
if type(state_dict[key]) == torch.Tensor and state_dict[key].dtype.is_floating_point:
state_dict[key] = state_dict[key].to(dtype)
logger.info(f"saving to: {file_name}")
if mem_eff_save:
mem_eff_save_file(state_dict, file_name, metadata=metadata)
else:
save_file(state_dict, file_name, metadata=metadata)
def merge_to_flux_model(
loading_device,
working_device,
flux_path: str,
clip_l_path: str,
t5xxl_path: str,
models,
ratios,
merge_dtype,
save_dtype,
mem_eff_load_save=False,
):
# create module map without loading state_dict
lora_name_to_module_key = {}
if flux_path is not None:
logger.info(f"loading keys from FLUX.1 model: {flux_path}")
with safe_open(flux_path, framework="pt", device=loading_device) as flux_file:
keys = list(flux_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_FLUX + "_" + module_name.replace(".", "_")
lora_name_to_module_key[lora_name] = key
lora_name_to_clip_l_key = {}
if clip_l_path is not None:
logger.info(f"loading keys from clip_l model: {clip_l_path}")
with safe_open(clip_l_path, framework="pt", device=loading_device) as clip_l_file:
keys = list(clip_l_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP + "_" + module_name.replace(".", "_")
lora_name_to_clip_l_key[lora_name] = key
lora_name_to_t5xxl_key = {}
if t5xxl_path is not None:
logger.info(f"loading keys from t5xxl model: {t5xxl_path}")
with safe_open(t5xxl_path, framework="pt", device=loading_device) as t5xxl_file:
keys = list(t5xxl_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5 + "_" + module_name.replace(".", "_")
lora_name_to_t5xxl_key[lora_name] = key
flux_state_dict = {}
clip_l_state_dict = {}
t5xxl_state_dict = {}
if mem_eff_load_save:
if flux_path is not None:
with MemoryEfficientSafeOpen(flux_path) as flux_file:
for key in tqdm(flux_file.keys()):
flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed
if clip_l_path is not None:
with MemoryEfficientSafeOpen(clip_l_path) as clip_l_file:
for key in tqdm(clip_l_file.keys()):
clip_l_state_dict[key] = clip_l_file.get_tensor(key).to(loading_device)
if t5xxl_path is not None:
with MemoryEfficientSafeOpen(t5xxl_path) as t5xxl_file:
for key in tqdm(t5xxl_file.keys()):
t5xxl_state_dict[key] = t5xxl_file.get_tensor(key).to(loading_device)
else:
if flux_path is not None:
flux_state_dict = load_file(flux_path, device=loading_device)
if clip_l_path is not None:
clip_l_state_dict = load_file(clip_l_path, device=loading_device)
if t5xxl_path is not None:
t5xxl_state_dict = load_file(t5xxl_path, device=loading_device)
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype) # loading on CPU
logger.info(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if "lora_down" in key:
lora_name = key[: key.rfind(".lora_down")]
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[: key.index("lora_down")] + "alpha"
if lora_name in lora_name_to_module_key:
module_weight_key = lora_name_to_module_key[lora_name]
state_dict = flux_state_dict
elif lora_name in lora_name_to_clip_l_key:
module_weight_key = lora_name_to_clip_l_key[lora_name]
state_dict = clip_l_state_dict
elif lora_name in lora_name_to_t5xxl_key:
module_weight_key = lora_name_to_t5xxl_key[lora_name]
state_dict = t5xxl_state_dict
else:
logger.warning(
f"no module found for LoRA weight: {key}. Skipping..."
f"LoRAの重みに対応するモジュールが見つかりませんでした。スキップします。"
)
continue
down_weight = lora_sd.pop(key)
up_weight = lora_sd.pop(up_key)
dim = down_weight.size()[0]
alpha = lora_sd.pop(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = state_dict[module_weight_key]
weight = weight.to(working_device, merge_dtype)
up_weight = up_weight.to(working_device, merge_dtype)
down_weight = down_weight.to(working_device, merge_dtype)
# logger.info(module_name, down_weight.size(), up_weight.size())
if len(weight.size()) == 2:
# linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + ratio * conved * scale
state_dict[module_weight_key] = weight.to(loading_device, save_dtype)
del up_weight
del down_weight
del weight
if len(lora_sd) > 0:
logger.warning(f"Unused keys in LoRA model: {list(lora_sd.keys())}")
return flux_state_dict, clip_l_state_dict, t5xxl_state_dict
def merge_to_flux_model_diffusers(
loading_device, working_device, flux_model, models, ratios, merge_dtype, save_dtype, mem_eff_load_save=False
):
logger.info(f"loading keys from FLUX.1 model: {flux_model}")
if mem_eff_load_save:
flux_state_dict = {}
with MemoryEfficientSafeOpen(flux_model) as flux_file:
for key in tqdm(flux_file.keys()):
flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed
else:
flux_state_dict = load_file(flux_model, device=loading_device)
def create_key_map(n_double_layers, n_single_layers):
key_map = {}
for index in range(n_double_layers):
prefix_from = f"transformer_blocks.{index}"
prefix_to = f"double_blocks.{index}"
for end in ("weight", "bias"):
k = f"{prefix_from}.attn."
qkv_img = f"{prefix_to}.img_attn.qkv.{end}"
qkv_txt = f"{prefix_to}.txt_attn.qkv.{end}"
key_map[f"{k}to_q.{end}"] = qkv_img
key_map[f"{k}to_k.{end}"] = qkv_img
key_map[f"{k}to_v.{end}"] = qkv_img
key_map[f"{k}add_q_proj.{end}"] = qkv_txt
key_map[f"{k}add_k_proj.{end}"] = qkv_txt
key_map[f"{k}add_v_proj.{end}"] = qkv_txt
block_map = {
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
}
for k, v in block_map.items():
key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}"
for index in range(n_single_layers):
prefix_from = f"single_transformer_blocks.{index}"
prefix_to = f"single_blocks.{index}"
for end in ("weight", "bias"):
k = f"{prefix_from}.attn."
qkv = f"{prefix_to}.linear1.{end}"
key_map[f"{k}to_q.{end}"] = qkv
key_map[f"{k}to_k.{end}"] = qkv
key_map[f"{k}to_v.{end}"] = qkv
key_map[f"{prefix_from}.proj_mlp.{end}"] = qkv
block_map = {
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
}
for k, v in block_map.items():
key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}"
# add as-is keys
values = list([(v if isinstance(v, str) else v[0]) for v in set(key_map.values())])
values.sort()
key_map.update({v: v for v in values})
return key_map
key_map = create_key_map(18, 38) # 18 double layers, 38 single layers
def find_matching_key(flux_dict, lora_key):
lora_key = lora_key.replace("diffusion_model.", "")
lora_key = lora_key.replace("transformer.", "")
lora_key = lora_key.replace("lora_A", "lora_down").replace("lora_B", "lora_up")
lora_key = lora_key.replace("single_transformer_blocks", "single_blocks")
lora_key = lora_key.replace("transformer_blocks", "double_blocks")
double_block_map = {
"attn.to_out.0": "img_attn.proj",
"norm1.linear": "img_mod.lin",
"norm1_context.linear": "txt_mod.lin",
"attn.to_add_out": "txt_attn.proj",
"ff.net.0.proj": "img_mlp.0",
"ff.net.2": "img_mlp.2",
"ff_context.net.0.proj": "txt_mlp.0",
"ff_context.net.2": "txt_mlp.2",
"attn.norm_q": "img_attn.norm.query_norm",
"attn.norm_k": "img_attn.norm.key_norm",
"attn.norm_added_q": "txt_attn.norm.query_norm",
"attn.norm_added_k": "txt_attn.norm.key_norm",
"attn.to_q": "img_attn.qkv",
"attn.to_k": "img_attn.qkv",
"attn.to_v": "img_attn.qkv",
"attn.add_q_proj": "txt_attn.qkv",
"attn.add_k_proj": "txt_attn.qkv",
"attn.add_v_proj": "txt_attn.qkv",
}
single_block_map = {
"norm.linear": "modulation.lin",
"proj_out": "linear2",
"attn.norm_q": "norm.query_norm",
"attn.norm_k": "norm.key_norm",
"attn.to_q": "linear1",
"attn.to_k": "linear1",
"attn.to_v": "linear1",
"proj_mlp": "linear1",
}
# same key exists in both single_block_map and double_block_map, so we must care about single/double
# print("lora_key before double_block_map", lora_key)
for old, new in double_block_map.items():
if "double" in lora_key:
lora_key = lora_key.replace(old, new)
# print("lora_key before single_block_map", lora_key)
for old, new in single_block_map.items():
if "single" in lora_key:
lora_key = lora_key.replace(old, new)
# print("lora_key after mapping", lora_key)
if lora_key in key_map:
flux_key = key_map[lora_key]
logger.info(f"Found matching key: {flux_key}")
return flux_key
# If not found in key_map, try partial matching
potential_key = lora_key + ".weight"
logger.info(f"Searching for key: {potential_key}")
matches = [k for k in flux_dict.keys() if potential_key in k]
if matches:
logger.info(f"Found matching key: {matches[0]}")
return matches[0]
return None
merged_keys = set()
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype)
logger.info("merging...")
for key in lora_sd.keys():
if "lora_down" in key or "lora_A" in key:
lora_name = key[: key.rfind(".lora_down" if "lora_down" in key else ".lora_A")]
up_key = key.replace("lora_down", "lora_up").replace("lora_A", "lora_B")
alpha_key = key[: key.index("lora_down" if "lora_down" in key else "lora_A")] + "alpha"
logger.info(f"Processing LoRA key: {lora_name}")
flux_key = find_matching_key(flux_state_dict, lora_name)
if flux_key is None:
logger.warning(f"no module found for LoRA weight: {key}")
continue
logger.info(f"Merging LoRA key {lora_name} into Flux key {flux_key}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
weight = flux_state_dict[flux_key]
weight = weight.to(working_device, merge_dtype)
up_weight = up_weight.to(working_device, merge_dtype)
down_weight = down_weight.to(working_device, merge_dtype)
# print(up_weight.size(), down_weight.size(), weight.size())
if lora_name.startswith("transformer."):
if "qkv" in flux_key or "linear1" in flux_key: # combined qkv or qkv+mlp
update = ratio * (up_weight @ down_weight) * scale
# print(update.shape)
if "img_attn" in flux_key or "txt_attn" in flux_key:
q, k, v = torch.chunk(weight, 3, dim=0)
if "to_q" in lora_name or "add_q_proj" in lora_name:
q += update.reshape(q.shape)
elif "to_k" in lora_name or "add_k_proj" in lora_name:
k += update.reshape(k.shape)
elif "to_v" in lora_name or "add_v_proj" in lora_name:
v += update.reshape(v.shape)
weight = torch.cat([q, k, v], dim=0)
elif "linear1" in flux_key:
q, k, v = torch.chunk(weight[: int(update.shape[-1] * 3)], 3, dim=0)
mlp = weight[int(update.shape[-1] * 3) :]
# print(q.shape, k.shape, v.shape, mlp.shape)
if "to_q" in lora_name:
q += update.reshape(q.shape)
elif "to_k" in lora_name:
k += update.reshape(k.shape)
elif "to_v" in lora_name:
v += update.reshape(v.shape)
elif "proj_mlp" in lora_name:
mlp += update.reshape(mlp.shape)
weight = torch.cat([q, k, v, mlp], dim=0)
else:
if len(weight.size()) == 2:
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
else:
if len(weight.size()) == 2:
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
flux_state_dict[flux_key] = weight.to(loading_device, save_dtype)
merged_keys.add(flux_key)
del up_weight
del down_weight
del weight
logger.info(f"Merged keys: {sorted(list(merged_keys))}")
return flux_state_dict
def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False):
base_alphas = {} # alpha for merged model
base_dims = {}
merged_sd = {}
base_model = None
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lora_metadata is not None:
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if "alpha" in key:
lora_module_name = key[: key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[: key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
logger.info("merging...")
for key in tqdm(lora_sd.keys()):
if "alpha" in key:
continue
if "lora_up" in key and concat:
concat_dim = 1
elif "lora_down" in key and concat:
concat_dim = 0
else:
concat_dim = None
lora_module_name = key[: key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
scale = math.sqrt(alpha / base_alpha) * ratio
scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。
if key in merged_sd:
assert (
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None
), "weights shape mismatch, different dims? / 重みのサイズが合いません。dimが異なる可能性があります。"
if concat_dim is not None:
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim)
else:
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
if shuffle:
key_down = lora_module_name + ".lora_down.weight"
key_up = lora_module_name + ".lora_up.weight"
dim = merged_sd[key_down].shape[0]
perm = torch.randperm(dim)
merged_sd[key_down] = merged_sd[key_down][perm]
merged_sd[key_up] = merged_sd[key_up][:, perm]
logger.info("merged model")
logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
# check all dims are same
dims_list = list(set(base_dims.values()))
alphas_list = list(set(base_alphas.values()))
all_same_dims = True
all_same_alphas = True
for dims in dims_list:
if dims != dims_list[0]:
all_same_dims = False
break
for alphas in alphas_list:
if alphas != alphas_list[0]:
all_same_alphas = False
break
# build minimum metadata
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic"
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic"
metadata = train_util.build_minimum_network_metadata(str(False), base_model, "networks.lora", dims, alphas, None)
return merged_sd, metadata
def merge(args):
if args.models is None:
args.models = []
if args.ratios is None:
args.ratios = []
assert len(args.models) == len(
args.ratios
), "number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
assert (
args.save_to or args.clip_l_save_to or args.t5xxl_save_to
), "save_to or clip_l_save_to or t5xxl_save_to must be specified / save_toまたはclip_l_save_toまたはt5xxl_save_toを指定してください"
dest_dir = os.path.dirname(args.save_to or args.clip_l_save_to or args.t5xxl_save_to)
if not os.path.exists(dest_dir):
logger.info(f"creating directory: {dest_dir}")
os.makedirs(dest_dir)
if args.flux_model is not None or args.clip_l is not None or args.t5xxl is not None:
if not args.diffusers:
assert (args.clip_l is None and args.clip_l_save_to is None) or (
args.clip_l is not None and args.clip_l_save_to is not None
), "clip_l_save_to must be specified if clip_l is specified / clip_lが指定されている場合はclip_l_save_toも指定してください"
assert (args.t5xxl is None and args.t5xxl_save_to is None) or (
args.t5xxl is not None and args.t5xxl_save_to is not None
), "t5xxl_save_to must be specified if t5xxl is specified / t5xxlが指定されている場合はt5xxl_save_toも指定してください"
flux_state_dict, clip_l_state_dict, t5xxl_state_dict = merge_to_flux_model(
args.loading_device,
args.working_device,
args.flux_model,
args.clip_l,
args.t5xxl,
args.models,
args.ratios,
merge_dtype,
save_dtype,
args.mem_eff_load_save,
)
else:
assert (
args.clip_l is None and args.t5xxl is None
), "clip_l and t5xxl are not supported with --diffusers / clip_l、t5xxlはDiffusersではサポートされていません"
flux_state_dict = merge_to_flux_model_diffusers(
args.loading_device,
args.working_device,
args.flux_model,
args.models,
args.ratios,
merge_dtype,
save_dtype,
args.mem_eff_load_save,
)
clip_l_state_dict = None
t5xxl_state_dict = None
if args.no_metadata or (flux_state_dict is None or len(flux_state_dict) == 0):
sai_metadata = None
else:
merged_from = sai_model_spec.build_merged_from([args.flux_model] + args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None, False, False, False, False, False, time.time(), title=title, merged_from=merged_from, flux="dev"
)
if flux_state_dict is not None and len(flux_state_dict) > 0:
logger.info(f"saving FLUX model to: {args.save_to}")
save_to_file(args.save_to, flux_state_dict, save_dtype, sai_metadata, args.mem_eff_load_save)
if clip_l_state_dict is not None and len(clip_l_state_dict) > 0:
logger.info(f"saving clip_l model to: {args.clip_l_save_to}")
save_to_file(args.clip_l_save_to, clip_l_state_dict, save_dtype, None, args.mem_eff_load_save)
if t5xxl_state_dict is not None and len(t5xxl_state_dict) > 0:
logger.info(f"saving t5xxl model to: {args.t5xxl_save_to}")
save_to_file(args.t5xxl_save_to, t5xxl_state_dict, save_dtype, None, args.mem_eff_load_save)
else:
flux_state_dict, metadata = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle)
logger.info("calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(flux_state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
flux_state_dict, False, False, False, True, False, time.time(), title=title, merged_from=merged_from, flux="dev"
)
metadata.update(sai_metadata)
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, flux_state_dict, save_dtype, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
help="precision in saving, same to merging if omitted. supported types: "
"float32, fp16, bf16, fp8 (same as fp8_e4m3fn), fp8_e4m3fn, fp8_e4m3fnuz, fp8_e5m2, fp8_e5m2fnuz"
" / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--flux_model",
type=str,
default=None,
help="FLUX.1 model to load, merge LoRA models if omitted / 読み込むモデル、指定しない場合はLoRAモデルをマージする",
)
parser.add_argument(
"--clip_l",
type=str,
default=None,
help="path to clip_l (*.sft or *.safetensors), should be float16 / clip_lのパス(*.sftまたは*.safetensors)",
)
parser.add_argument(
"--t5xxl",
type=str,
default=None,
help="path to t5xxl (*.sft or *.safetensors), should be float16 / t5xxlのパス(*.sftまたは*.safetensors)",
)
parser.add_argument(
"--mem_eff_load_save",
action="store_true",
help="use custom memory efficient load and save functions for FLUX.1 model"
" / カスタムのメモリ効率の良い読み込みと保存関数をFLUX.1モデルに使用する",
)
parser.add_argument(
"--loading_device",
type=str,
default="cpu",
help="device to load FLUX.1 model. LoRA models are loaded on CPU / FLUX.1モデルを読み込むデバイス。LoRAモデルはCPUで読み込まれます",
)
parser.add_argument(
"--working_device",
type=str,
default="cpu",
help="device to work (merge). Merging LoRA models are done on CPU."
+ " / 作業(マージ)するデバイス。LoRAモデルのマージはCPUで行われます。",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: safetensors file / 保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--clip_l_save_to",
type=str,
default=None,
help="destination file name for clip_l: safetensors file / clip_lの保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--t5xxl_save_to",
type=str,
default=None,
help="destination file name for t5xxl: safetensors file / t5xxlの保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--models",
type=str,
nargs="*",
help="LoRA models to merge: safetensors file / マージするLoRAモデル、safetensorsファイル",
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
parser.add_argument(
"--concat",
action="store_true",
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / "
+ "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="shuffle lora weight./ " + "LoRAの重みをシャッフルする",
)
parser.add_argument(
"--diffusers",
action="store_true",
help="merge Diffusers (?) LoRA models / Diffusers (?) LoRAモデルをマージする",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)