MakeAnything / flux_inference_recraft.py
yiren98's picture
Upload 17 files
36ed92b verified
import argparse
import copy
import math
import random
from typing import Any
import pdb
import os
import time
from PIL import Image, ImageOps
import torch
from accelerate import Accelerator
from library.device_utils import clean_memory_on_device
from safetensors.torch import load_file
from networks import lora_flux
from library import flux_models, flux_train_utils_recraft as flux_train_utils, flux_utils, sd3_train_utils, \
strategy_base, strategy_flux, train_util
from torchvision import transforms
import train_network
from library.utils import setup_logging
from diffusers.utils import load_image
import numpy as np
setup_logging()
import logging
logger = logging.getLogger(__name__)
def load_target_model(
fp8_base: bool,
pretrained_model_name_or_path: str,
disable_mmap_load_safetensors: bool,
clip_l_path: str,
fp8_base_unet: bool,
t5xxl_path: str,
ae_path: str,
weight_dtype: torch.dtype,
accelerator: Accelerator
):
# Determine the loading data type
loading_dtype = None if fp8_base else weight_dtype
# Load the main model to the accelerator's device
_, model = flux_utils.load_flow_model(
pretrained_model_name_or_path,
# loading_dtype,
torch.float8_e4m3fn,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
if fp8_base:
# Check dtype of the model
if model.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 FLUX model")
# Load the CLIP model to the accelerator's device
clip_l = flux_utils.load_clip_l(
clip_l_path,
weight_dtype,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
clip_l.eval()
# Determine the loading data type for T5XXL
if fp8_base and not fp8_base_unet:
loading_dtype_t5xxl = None # as is
else:
loading_dtype_t5xxl = weight_dtype
# Load the T5XXL model to the accelerator's device
t5xxl = flux_utils.load_t5xxl(
t5xxl_path,
loading_dtype_t5xxl,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
t5xxl.eval()
if fp8_base and not fp8_base_unet:
# Check dtype of the T5XXL model
if t5xxl.dtype in {torch.float8_e4m3fnuz, torch.float8_e5m2, torch.float8_e5m2fnuz}:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
# Load the AE model to the accelerator's device
ae = flux_utils.load_ae(
ae_path,
weight_dtype,
# accelerator.device, # Changed from "cpu" to accelerator.device
"cpu",
disable_mmap=disable_mmap_load_safetensors
)
# # Wrap models with Accelerator for potential distributed setups
# model, clip_l, t5xxl, ae = accelerator.prepare(model, clip_l, t5xxl, ae)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
import torchvision.transforms as transforms
class ResizeWithPadding:
def __init__(self, size, fill=255):
self.size = size
self.fill = fill
def __call__(self, img):
if isinstance(img, np.ndarray):
img = Image.fromarray(img)
elif not isinstance(img, Image.Image):
raise TypeError("Input must be a PIL Image or a NumPy array")
width, height = img.size
if width == height:
img = img.resize((self.size, self.size), Image.LANCZOS)
else:
max_dim = max(width, height)
new_img = Image.new("RGB", (max_dim, max_dim), (self.fill, self.fill, self.fill))
new_img.paste(img, ((max_dim - width) // 2, (max_dim - height) // 2))
img = new_img.resize((self.size, self.size), Image.LANCZOS)
return img
def sample(args, accelerator, vae, text_encoder, flux, output_dir, sample_images, sample_prompts):
def encode_images_to_latents(vae, images):
# Get image dimensions
b, c, h, w = images.shape
num_split = 2 if args.frame_num == 4 else 3
# Split the image into three parts
img_parts = [images[:, :, :, i * w // num_split:(i + 1) * w // num_split] for i in range(num_split)]
# Encode each part
latents = [vae.encode(img) for img in img_parts]
# Concatenate latents in the latent space to reconstruct the full image
latents = torch.cat(latents, dim=-1)
return latents
def encode_images_to_latents2(vae, images):
latents = vae.encode(images)
return latents
# Directly use precomputed conditions
conditions = {}
with torch.no_grad():
for image_path, prompt_dict in zip(sample_images, sample_prompts):
prompt = prompt_dict.get("prompt", "")
if prompt not in conditions:
logger.info(f"Cache conditions for image: {image_path} with prompt: {prompt}")
resize_transform = ResizeWithPadding(size=512, fill=255) if args.frame_num == 4 else ResizeWithPadding(size=352, fill=255)
img_transforms = transforms.Compose([
resize_transform,
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
# Load and preprocess image
image = img_transforms(np.array(load_image(image_path), dtype=np.uint8)).unsqueeze(0).to(
# accelerator.device, # Move image to CUDA
vae.device,
dtype=vae.dtype
)
latents = encode_images_to_latents2(vae, image)
# Log the shape of latents
logger.debug(f"Encoded latents shape for prompt '{prompt}': {latents.shape}")
# Store conditions on CUDA
# conditions[prompt] = latents[:,:,latents.shape[2]//2:latents.shape[2], :latents.shape[3]//2].to("cpu")
conditions[prompt] = latents.to("cpu")
sample_conditions = conditions
if sample_conditions is not None:
conditions = {k: v for k, v in sample_conditions.items()} # Already on CUDA
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
text_encoder[0].to(accelerator.device)
text_encoder[1].to(accelerator.device)
tokenize_strategy = strategy_flux.FluxTokenizeStrategy(512)
text_encoding_strategy = strategy_flux.FluxTextEncodingStrategy(True)
with accelerator.autocast(), torch.no_grad():
for prompt_dict in sample_prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"Cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoder, tokens_and_masks, True
)
logger.info(f"Generating image")
save_dir = output_dir
os.makedirs(save_dir, exist_ok=True)
with torch.no_grad(), accelerator.autocast():
for prompt_dict in sample_prompts:
sample_image_inference(
args,
accelerator,
flux,
text_encoder,
vae,
save_dir,
prompt_dict,
sample_prompts_te_outputs,
None,
conditions
)
clean_memory_on_device(accelerator.device)
def sample_image_inference(
args,
accelerator: Accelerator,
flux: flux_models.Flux,
text_encoder,
ae: flux_models.AutoEncoder,
save_dir,
prompt_dict,
sample_prompts_te_outputs,
prompt_replacement,
sample_images_ae_outputs
):
# Extract parameters from prompt_dict
sample_steps = prompt_dict.get("sample_steps", 20)
width = prompt_dict.get("width", 1024) if args.frame_num == 4 else prompt_dict.get("width", 1056)
height = prompt_dict.get("height", 1024) if args.frame_num == 4 else prompt_dict.get("height", 1056)
scale = prompt_dict.get("scale", 1.0)
seed = prompt_dict.get("seed")
prompt: str = prompt_dict.get("prompt", "")
if prompt_replacement is not None:
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
else:
# True random sample image generation
torch.seed()
torch.cuda.seed()
# Ensure height and width are divisible by 16
height = max(64, height - height % 16)
width = max(64, width - width % 16)
logger.info(f"prompt: {prompt}")
logger.info(f"height: {height}")
logger.info(f"width: {width}")
logger.info(f"sample_steps: {sample_steps}")
logger.info(f"scale: {scale}")
if seed is not None:
logger.info(f"seed: {seed}")
# Encode prompts
# Assuming that TokenizeStrategy and TextEncodingStrategy are compatible with Accelerator
text_encoder_conds = []
if sample_prompts_te_outputs and prompt in sample_prompts_te_outputs:
text_encoder_conds = sample_prompts_te_outputs[prompt]
logger.info(f"Using cached text encoder outputs for prompt: {prompt}")
if sample_images_ae_outputs and prompt in sample_images_ae_outputs:
ae_outputs = sample_images_ae_outputs[prompt]
else:
ae_outputs = None
# ae_outputs = torch.load('ae_outputs.pth', map_location='cuda:0')
# text_encoder_conds = torch.load('text_encoder_conds.pth', map_location='cuda:0')
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
# 打印调试信息
logger.debug(
f"l_pooled shape: {l_pooled.shape}, t5_out shape: {t5_out.shape}, txt_ids shape: {txt_ids.shape}, t5_attn_mask shape: {t5_attn_mask.shape}")
# 采样图像
weight_dtype = ae.dtype # TODO: give dtype as argument
packed_latent_height = height // 16
packed_latent_width = width // 16
# 打印调试信息
logger.debug(f"packed_latent_height: {packed_latent_height}, packed_latent_width: {packed_latent_width}")
# 准备噪声张量在 CUDA 上
noise = torch.randn(
1,
packed_latent_height * packed_latent_width,
16 * 2 * 2,
device=accelerator.device,
dtype=weight_dtype,
generator=torch.Generator(device=accelerator.device).manual_seed(seed) if seed is not None else None,
)
timesteps = flux_train_utils.get_schedule(sample_steps, noise.shape[1], shift=True) # FLUX.1 dev -> shift=True
img_ids = flux_utils.prepare_img_ids(1, packed_latent_height, packed_latent_width).to(
accelerator.device, dtype=weight_dtype
)
t5_attn_mask = t5_attn_mask.to(accelerator.device)
clip_l, t5xxl = text_encoder
# ae.to("cpu")
clip_l.to("cpu")
t5xxl.to("cpu")
clean_memory_on_device(accelerator.device)
flux.to("cuda")
for param in flux.parameters():
param.requires_grad = False
# 执行去噪
with accelerator.autocast(), torch.no_grad():
x = flux_train_utils.denoise(args, flux, noise, img_ids, t5_out, txt_ids, l_pooled, timesteps=timesteps,
guidance=scale, t5_attn_mask=t5_attn_mask, ae_outputs=ae_outputs)
# 打印x的形状
logger.debug(f"x shape after denoise: {x.shape}")
x = x.float()
x = flux_utils.unpack_latents(x, packed_latent_height, packed_latent_width)
# 将潜在向量转换为图像
# clean_memory_on_device(accelerator.device)
ae.to(accelerator.device)
with accelerator.autocast(), torch.no_grad():
x = ae.decode(x)
ae.to("cpu")
clean_memory_on_device(accelerator.device)
x = x.clamp(-1, 1)
x = x.permute(0, 2, 3, 1)
image = Image.fromarray((127.5 * (x + 1.0)).float().cpu().numpy().astype(np.uint8)[0])
# 生成唯一的文件名
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
seed_suffix = "" if seed is None else f"_{seed}"
i: int = prompt_dict.get("enum", 0) # Ensure 'enum' exists
img_filename = f"{ts_str}{seed_suffix}_{i}.png" # Added 'i' to filename for uniqueness
image.save(os.path.join(save_dir, img_filename))
def setup_argparse():
parser = argparse.ArgumentParser(description="FLUX-Controlnet-Inpainting Inference Script")
# Paths
parser.add_argument('--base_flux_checkpoint', type=str, required=True,
help='Path to BASE_FLUX_CHECKPOINT')
parser.add_argument('--lora_weights_path', type=str, required=True,
help='Path to LORA_WEIGHTS_PATH')
parser.add_argument('--clip_l_path', type=str, required=True,
help='Path to CLIP_L_PATH')
parser.add_argument('--t5xxl_path', type=str, required=True,
help='Path to T5XXL_PATH')
parser.add_argument('--ae_path', type=str, required=True,
help='Path to AE_PATH')
parser.add_argument('--sample_images_file', type=str, required=True,
help='Path to SAMPLE_IMAGES_FILE')
parser.add_argument('--sample_prompts_file', type=str, required=True,
help='Path to SAMPLE_PROMPTS_FILE')
parser.add_argument('--output_dir', type=str, required=True,
help='Directory to save OUTPUT_DIR')
parser.add_argument('--frame_num', type=int, choices=[4, 9], required=True,
help="The number of steps in the generated step diagram (choose 4 or 9)")
return parser.parse_args()
def main(args):
accelerator = Accelerator(mixed_precision='bf16', device_placement=True)
BASE_FLUX_CHECKPOINT = args.base_flux_checkpoint
LORA_WEIGHTS_PATH = args.lora_weights_path
CLIP_L_PATH = args.clip_l_path
T5XXL_PATH = args.t5xxl_path
AE_PATH = args.ae_path
SAMPLE_IMAGES_FILE = args.sample_images_file
SAMPLE_PROMPTS_FILE = args.sample_prompts_file
OUTPUT_DIR = args.output_dir
with open(SAMPLE_IMAGES_FILE, "r", encoding="utf-8") as f:
image_lines = f.readlines()
sample_images = [line.strip() for line in image_lines if line.strip() and not line.strip().startswith("#")]
sample_prompts = train_util.load_prompts(SAMPLE_PROMPTS_FILE)
# Load models onto CUDA via Accelerator
_, [clip_l, t5xxl], ae, model = load_target_model(
fp8_base=True,
pretrained_model_name_or_path=BASE_FLUX_CHECKPOINT,
disable_mmap_load_safetensors=False,
clip_l_path=CLIP_L_PATH,
fp8_base_unet=False,
t5xxl_path=T5XXL_PATH,
ae_path=AE_PATH,
weight_dtype=torch.bfloat16,
accelerator=accelerator
)
model.eval()
clip_l.eval()
t5xxl.eval()
ae.eval()
# LoRA
multiplier = 1.0
weights_sd = load_file(LORA_WEIGHTS_PATH)
lora_model, _ = lora_flux.create_network_from_weights(multiplier, None, ae, [clip_l, t5xxl], model, weights_sd,
True)
lora_model.apply_to([clip_l, t5xxl], model)
info = lora_model.load_state_dict(weights_sd, strict=True)
logger.info(f"Loaded LoRA weights from {LORA_WEIGHTS_PATH}: {info}")
lora_model.eval()
lora_model.to("cuda")
# Set text encoders
text_encoder = [clip_l, t5xxl]
sample(args, accelerator, vae=ae, text_encoder=text_encoder, flux=model, output_dir=OUTPUT_DIR,
sample_images=sample_images, sample_prompts=sample_prompts)
if __name__ == "__main__":
args = setup_argparse()
main(args)