Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
from transformers import Adafactor | |
# stochastic rounding for bfloat16 | |
# The implementation was provided by 2kpr. Thank you very much! | |
def copy_stochastic_(target: torch.Tensor, source: torch.Tensor): | |
""" | |
copies source into target using stochastic rounding | |
Args: | |
target: the target tensor with dtype=bfloat16 | |
source: the target tensor with dtype=float32 | |
""" | |
# create a random 16 bit integer | |
result = torch.randint_like(source, dtype=torch.int32, low=0, high=(1 << 16)) | |
# add the random number to the lower 16 bit of the mantissa | |
result.add_(source.view(dtype=torch.int32)) | |
# mask off the lower 16 bit of the mantissa | |
result.bitwise_and_(-65536) # -65536 = FFFF0000 as a signed int32 | |
# copy the higher 16 bit into the target tensor | |
target.copy_(result.view(dtype=torch.float32)) | |
del result | |
def adafactor_step_param(self, p, group): | |
if p.grad is None: | |
return | |
grad = p.grad | |
if grad.dtype in {torch.float16, torch.bfloat16}: | |
grad = grad.float() | |
if grad.is_sparse: | |
raise RuntimeError("Adafactor does not support sparse gradients.") | |
state = self.state[p] | |
grad_shape = grad.shape | |
factored, use_first_moment = Adafactor._get_options(group, grad_shape) | |
# State Initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
if use_first_moment: | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(grad) | |
if factored: | |
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) | |
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) | |
else: | |
state["exp_avg_sq"] = torch.zeros_like(grad) | |
state["RMS"] = 0 | |
else: | |
if use_first_moment: | |
state["exp_avg"] = state["exp_avg"].to(grad) | |
if factored: | |
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) | |
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) | |
else: | |
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) | |
p_data_fp32 = p | |
if p.dtype in {torch.float16, torch.bfloat16}: | |
p_data_fp32 = p_data_fp32.float() | |
state["step"] += 1 | |
state["RMS"] = Adafactor._rms(p_data_fp32) | |
lr = Adafactor._get_lr(group, state) | |
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"]) | |
update = (grad**2) + group["eps"][0] | |
if factored: | |
exp_avg_sq_row = state["exp_avg_sq_row"] | |
exp_avg_sq_col = state["exp_avg_sq_col"] | |
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t)) | |
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t)) | |
# Approximation of exponential moving average of square of gradient | |
update = Adafactor._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col) | |
update.mul_(grad) | |
else: | |
exp_avg_sq = state["exp_avg_sq"] | |
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t)) | |
update = exp_avg_sq.rsqrt().mul_(grad) | |
update.div_((Adafactor._rms(update) / group["clip_threshold"]).clamp_(min=1.0)) | |
update.mul_(lr) | |
if use_first_moment: | |
exp_avg = state["exp_avg"] | |
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"])) | |
update = exp_avg | |
if group["weight_decay"] != 0: | |
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr)) | |
p_data_fp32.add_(-update) | |
# if p.dtype in {torch.float16, torch.bfloat16}: | |
# p.copy_(p_data_fp32) | |
if p.dtype == torch.bfloat16: | |
copy_stochastic_(p, p_data_fp32) | |
elif p.dtype == torch.float16: | |
p.copy_(p_data_fp32) | |
def adafactor_step(self, closure=None): | |
""" | |
Performs a single optimization step | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
adafactor_step_param(self, p, group) | |
return loss | |
def patch_adafactor_fused(optimizer: Adafactor): | |
optimizer.step_param = adafactor_step_param.__get__(optimizer) | |
optimizer.step = adafactor_step.__get__(optimizer) | |