MakeAnything / library /flux_models.py
yiren98's picture
Upload 98 files
abd09b6 verified
# copy from FLUX repo: https://github.com/black-forest-labs/flux
# license: Apache-2.0 License
from concurrent.futures import Future, ThreadPoolExecutor
from dataclasses import dataclass
import math
import os
import time
from typing import Dict, List, Optional, Union
from library import utils
from library.device_utils import init_ipex, clean_memory_on_device
init_ipex()
import torch
from einops import rearrange
from torch import Tensor, nn
from torch.utils.checkpoint import checkpoint
from library import custom_offloading_utils
# USE_REENTRANT = True
@dataclass
class FluxParams:
in_channels: int
vec_in_dim: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list[int]
theta: int
qkv_bias: bool
guidance_embed: bool
# region autoencoder
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: list[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
def swish(x: Tensor) -> Tensor:
return x * torch.sigmoid(x)
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
def attention(self, h_: Tensor) -> Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
def forward(self, x: Tensor) -> Tensor:
return x + self.proj_out(self.attention(x))
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h = x
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x: Tensor):
pad = (0, 1, 0, 1)
x = nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __init__(self, sample: bool = True, chunk_dim: int = 1):
super().__init__()
self.sample = sample
self.chunk_dim = chunk_dim
def forward(self, z: Tensor) -> Tensor:
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if self.sample:
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian()
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@property
def dtype(self) -> torch.dtype:
return next(self.parameters()).dtype
def encode(self, x: Tensor) -> Tensor:
z = self.reg(self.encoder(x))
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: Tensor) -> Tensor:
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def forward(self, x: Tensor) -> Tensor:
return self.decode(self.encode(x))
# endregion
# region config
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
ckpt_path: str | None
ae_path: str | None
# repo_id: str | None
# repo_flow: str | None
# repo_ae: str | None
configs = {
"dev": ModelSpec(
# repo_id="black-forest-labs/FLUX.1-dev",
# repo_flow="flux1-dev.sft",
# repo_ae="ae.sft",
ckpt_path=None, # os.getenv("FLUX_DEV"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_path=None, # os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"schnell": ModelSpec(
# repo_id="black-forest-labs/FLUX.1-schnell",
# repo_flow="flux1-schnell.sft",
# repo_ae="ae.sft",
ckpt_path=None, # os.getenv("FLUX_SCHNELL"),
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_path=None, # os.getenv("AE"),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
# endregion
# region math
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Optional[Tensor] = None) -> Tensor:
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
# endregion
# region layers
# for cpu_offload_checkpointing
def to_cuda(x):
if isinstance(x, torch.Tensor):
return x.cuda()
elif isinstance(x, (list, tuple)):
return [to_cuda(elem) for elem in x]
elif isinstance(x, dict):
return {k: to_cuda(v) for k, v in x.items()}
else:
return x
def to_cpu(x):
if isinstance(x, torch.Tensor):
return x.cpu()
elif isinstance(x, (list, tuple)):
return [to_cpu(elem) for elem in x]
elif isinstance(x, dict):
return {k: to_cpu(v) for k, v in x.items()}
else:
return x
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
self.gradient_checkpointing = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
def _forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
def forward(self, *args, **kwargs):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
else:
return self._forward(*args, **kwargs)
# def forward(self, x):
# if self.training and self.gradient_checkpointing:
# def create_custom_forward(func):
# def custom_forward(*inputs):
# return func(*inputs)
# return custom_forward
# return torch.utils.checkpoint.checkpoint(create_custom_forward(self._forward), x, use_reentrant=USE_REENTRANT)
# else:
# return self._forward(x)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
# return (x * rrms).to(dtype=x_dtype) * self.scale
return ((x * rrms) * self.scale.float()).to(dtype=x_dtype)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
# this is not called from DoubleStreamBlock/SingleStreamBlock because they uses attention function directly
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
def enable_gradient_checkpointing(self, cpu_offload: bool = False):
self.gradient_checkpointing = True
self.cpu_offload_checkpointing = cpu_offload
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
def _forward(
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None
) -> tuple[Tensor, Tensor]:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
# make attention mask if not None
attn_mask = None
if txt_attention_mask is not None:
# F.scaled_dot_product_attention expects attn_mask to be bool for binary mask
attn_mask = txt_attention_mask.to(torch.bool) # b, seq_len
attn_mask = torch.cat(
(attn_mask, torch.ones(attn_mask.shape[0], img.shape[1], device=attn_mask.device, dtype=torch.bool)), dim=1
) # b, seq_len + img_len
# broadcast attn_mask to all heads
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1)
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img blocks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt blocks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
return img, txt
def forward(
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None
) -> tuple[Tensor, Tensor]:
if self.training and self.gradient_checkpointing:
if not self.cpu_offload_checkpointing:
return checkpoint(self._forward, img, txt, vec, pe, txt_attention_mask, use_reentrant=False)
# cpu offload checkpointing
def create_custom_forward(func):
def custom_forward(*inputs):
cuda_inputs = to_cuda(inputs)
outputs = func(*cuda_inputs)
return to_cpu(outputs)
return custom_forward
return torch.utils.checkpoint.checkpoint(
create_custom_forward(self._forward), img, txt, vec, pe, txt_attention_mask, use_reentrant=False
)
else:
return self._forward(img, txt, vec, pe, txt_attention_mask)
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
def enable_gradient_checkpointing(self, cpu_offload: bool = False):
self.gradient_checkpointing = True
self.cpu_offload_checkpointing = cpu_offload
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
def _forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor:
mod, _ = self.modulation(vec)
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# make attention mask if not None
attn_mask = None
if txt_attention_mask is not None:
# F.scaled_dot_product_attention expects attn_mask to be bool for binary mask
attn_mask = txt_attention_mask.to(torch.bool) # b, seq_len
attn_mask = torch.cat(
(
attn_mask,
torch.ones(
attn_mask.shape[0], x.shape[1] - txt_attention_mask.shape[1], device=attn_mask.device, dtype=torch.bool
),
),
dim=1,
) # b, seq_len + img_len = x_len
# broadcast attn_mask to all heads
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1)
# compute attention
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor:
if self.training and self.gradient_checkpointing:
if not self.cpu_offload_checkpointing:
return checkpoint(self._forward, x, vec, pe, txt_attention_mask, use_reentrant=False)
# cpu offload checkpointing
def create_custom_forward(func):
def custom_forward(*inputs):
cuda_inputs = to_cuda(inputs)
outputs = func(*cuda_inputs)
return to_cpu(outputs)
return custom_forward
return torch.utils.checkpoint.checkpoint(
create_custom_forward(self._forward), x, vec, pe, txt_attention_mask, use_reentrant=False
)
else:
return self._forward(x, vec, pe, txt_attention_mask)
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
# endregion
class Flux(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
self.blocks_to_swap = None
self.offloader_double = None
self.offloader_single = None
self.num_double_blocks = len(self.double_blocks)
self.num_single_blocks = len(self.single_blocks)
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def enable_gradient_checkpointing(self, cpu_offload: bool = False):
self.gradient_checkpointing = True
self.cpu_offload_checkpointing = cpu_offload
self.time_in.enable_gradient_checkpointing()
self.vector_in.enable_gradient_checkpointing()
if self.guidance_in.__class__ != nn.Identity:
self.guidance_in.enable_gradient_checkpointing()
for block in self.double_blocks + self.single_blocks:
block.enable_gradient_checkpointing(cpu_offload=cpu_offload)
print(f"FLUX: Gradient checkpointing enabled. CPU offload: {cpu_offload}")
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.cpu_offload_checkpointing = False
self.time_in.disable_gradient_checkpointing()
self.vector_in.disable_gradient_checkpointing()
if self.guidance_in.__class__ != nn.Identity:
self.guidance_in.disable_gradient_checkpointing()
for block in self.double_blocks + self.single_blocks:
block.disable_gradient_checkpointing()
print("FLUX: Gradient checkpointing disabled.")
def enable_block_swap(self, num_blocks: int, device: torch.device):
self.blocks_to_swap = num_blocks
double_blocks_to_swap = num_blocks // 2
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2
assert double_blocks_to_swap <= self.num_double_blocks - 2 and single_blocks_to_swap <= self.num_single_blocks - 2, (
f"Cannot swap more than {self.num_double_blocks - 2} double blocks and {self.num_single_blocks - 2} single blocks. "
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks."
)
self.offloader_double = custom_offloading_utils.ModelOffloader(
self.double_blocks, self.num_double_blocks, double_blocks_to_swap, device # , debug=True
)
self.offloader_single = custom_offloading_utils.ModelOffloader(
self.single_blocks, self.num_single_blocks, single_blocks_to_swap, device # , debug=True
)
print(
f"FLUX: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}."
)
def move_to_device_except_swap_blocks(self, device: torch.device):
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
if self.blocks_to_swap:
save_double_blocks = self.double_blocks
save_single_blocks = self.single_blocks
self.double_blocks = None
self.single_blocks = None
self.to(device)
if self.blocks_to_swap:
self.double_blocks = save_double_blocks
self.single_blocks = save_single_blocks
def prepare_block_swap_before_forward(self):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks)
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks)
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
txt_attention_mask: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
if not self.blocks_to_swap:
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
else:
for block_idx, block in enumerate(self.double_blocks):
self.offloader_double.wait_for_block(block_idx)
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
self.offloader_double.submit_move_blocks(self.double_blocks, block_idx)
img = torch.cat((txt, img), 1)
for block_idx, block in enumerate(self.single_blocks):
self.offloader_single.wait_for_block(block_idx)
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
self.offloader_single.submit_move_blocks(self.single_blocks, block_idx)
img = img[:, txt.shape[1] :, ...]
if self.training and self.cpu_offload_checkpointing:
img = img.to(self.device)
vec = vec.to(self.device)
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
"""
class FluxUpper(nn.Module):
""
Transformer model for flow matching on sequences.
""
def __init__(self, params: FluxParams):
super().__init__()
self.params = params
self.in_channels = params.in_channels
self.out_channels = self.in_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}")
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
self.gradient_checkpointing = False
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
self.time_in.enable_gradient_checkpointing()
self.vector_in.enable_gradient_checkpointing()
if self.guidance_in.__class__ != nn.Identity:
self.guidance_in.enable_gradient_checkpointing()
for block in self.double_blocks:
block.enable_gradient_checkpointing()
print("FLUX: Gradient checkpointing enabled.")
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
self.time_in.disable_gradient_checkpointing()
self.vector_in.disable_gradient_checkpointing()
if self.guidance_in.__class__ != nn.Identity:
self.guidance_in.disable_gradient_checkpointing()
for block in self.double_blocks:
block.disable_gradient_checkpointing()
print("FLUX: Gradient checkpointing disabled.")
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
txt_attention_mask: Tensor | None = None,
) -> Tensor:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256))
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
vec = vec + self.vector_in(y)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
return img, txt, vec, pe
class FluxLower(nn.Module):
""
Transformer model for flow matching on sequences.
""
def __init__(self, params: FluxParams):
super().__init__()
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.out_channels = params.in_channels
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
self.gradient_checkpointing = False
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
for block in self.single_blocks:
block.enable_gradient_checkpointing()
print("FLUX: Gradient checkpointing enabled.")
def disable_gradient_checkpointing(self):
self.gradient_checkpointing = False
for block in self.single_blocks:
block.disable_gradient_checkpointing()
print("FLUX: Gradient checkpointing disabled.")
def forward(
self,
img: Tensor,
txt: Tensor,
vec: Tensor | None = None,
pe: Tensor | None = None,
txt_attention_mask: Tensor | None = None,
) -> Tensor:
img = torch.cat((txt, img), 1)
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask)
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
"""