Spaces:
Running
on
Zero
Running
on
Zero
# copy from FLUX repo: https://github.com/black-forest-labs/flux | |
# license: Apache-2.0 License | |
from concurrent.futures import Future, ThreadPoolExecutor | |
from dataclasses import dataclass | |
import math | |
import os | |
import time | |
from typing import Dict, List, Optional, Union | |
from library import utils | |
from library.device_utils import init_ipex, clean_memory_on_device | |
init_ipex() | |
import torch | |
from einops import rearrange | |
from torch import Tensor, nn | |
from torch.utils.checkpoint import checkpoint | |
from library import custom_offloading_utils | |
# USE_REENTRANT = True | |
class FluxParams: | |
in_channels: int | |
vec_in_dim: int | |
context_in_dim: int | |
hidden_size: int | |
mlp_ratio: float | |
num_heads: int | |
depth: int | |
depth_single_blocks: int | |
axes_dim: list[int] | |
theta: int | |
qkv_bias: bool | |
guidance_embed: bool | |
# region autoencoder | |
class AutoEncoderParams: | |
resolution: int | |
in_channels: int | |
ch: int | |
out_ch: int | |
ch_mult: list[int] | |
num_res_blocks: int | |
z_channels: int | |
scale_factor: float | |
shift_factor: float | |
def swish(x: Tensor) -> Tensor: | |
return x * torch.sigmoid(x) | |
class AttnBlock(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
def attention(self, h_: Tensor) -> Tensor: | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
b, c, h, w = q.shape | |
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous() | |
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous() | |
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous() | |
h_ = nn.functional.scaled_dot_product_attention(q, k, v) | |
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) | |
def forward(self, x: Tensor) -> Tensor: | |
return x + self.proj_out(self.attention(x)) | |
class ResnetBlock(nn.Module): | |
def __init__(self, in_channels: int, out_channels: int): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) | |
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if self.in_channels != self.out_channels: | |
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
h = x | |
h = self.norm1(h) | |
h = swish(h) | |
h = self.conv1(h) | |
h = self.norm2(h) | |
h = swish(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
x = self.nin_shortcut(x) | |
return x + h | |
class Downsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) | |
def forward(self, x: Tensor): | |
pad = (0, 1, 0, 1) | |
x = nn.functional.pad(x, pad, mode="constant", value=0) | |
x = self.conv(x) | |
return x | |
class Upsample(nn.Module): | |
def __init__(self, in_channels: int): | |
super().__init__() | |
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: Tensor): | |
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = self.conv(x) | |
return x | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
resolution: int, | |
in_channels: int, | |
ch: int, | |
ch_mult: list[int], | |
num_res_blocks: int, | |
z_channels: int, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# downsampling | |
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.in_ch_mult = in_ch_mult | |
self.down = nn.ModuleList() | |
block_in = self.ch | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) | |
block_in = block_out | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
down.downsample = Downsample(block_in) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
# end | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) | |
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1) | |
def forward(self, x: Tensor) -> Tensor: | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1]) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# end | |
h = self.norm_out(h) | |
h = swish(h) | |
h = self.conv_out(h) | |
return h | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
ch: int, | |
out_ch: int, | |
ch_mult: list[int], | |
num_res_blocks: int, | |
in_channels: int, | |
resolution: int, | |
z_channels: int, | |
): | |
super().__init__() | |
self.ch = ch | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
self.ffactor = 2 ** (self.num_resolutions - 1) | |
# compute in_ch_mult, block_in and curr_res at lowest res | |
block_in = ch * ch_mult[self.num_resolutions - 1] | |
curr_res = resolution // 2 ** (self.num_resolutions - 1) | |
self.z_shape = (1, z_channels, curr_res, curr_res) | |
# z to block_in | |
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
self.mid.attn_1 = AttnBlock(block_in) | |
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in) | |
# upsampling | |
self.up = nn.ModuleList() | |
for i_level in reversed(range(self.num_resolutions)): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_out = ch * ch_mult[i_level] | |
for _ in range(self.num_res_blocks + 1): | |
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out)) | |
block_in = block_out | |
up = nn.Module() | |
up.block = block | |
up.attn = attn | |
if i_level != 0: | |
up.upsample = Upsample(block_in) | |
curr_res = curr_res * 2 | |
self.up.insert(0, up) # prepend to get consistent order | |
# end | |
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) | |
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) | |
def forward(self, z: Tensor) -> Tensor: | |
# z to block_in | |
h = self.conv_in(z) | |
# middle | |
h = self.mid.block_1(h) | |
h = self.mid.attn_1(h) | |
h = self.mid.block_2(h) | |
# upsampling | |
for i_level in reversed(range(self.num_resolutions)): | |
for i_block in range(self.num_res_blocks + 1): | |
h = self.up[i_level].block[i_block](h) | |
if len(self.up[i_level].attn) > 0: | |
h = self.up[i_level].attn[i_block](h) | |
if i_level != 0: | |
h = self.up[i_level].upsample(h) | |
# end | |
h = self.norm_out(h) | |
h = swish(h) | |
h = self.conv_out(h) | |
return h | |
class DiagonalGaussian(nn.Module): | |
def __init__(self, sample: bool = True, chunk_dim: int = 1): | |
super().__init__() | |
self.sample = sample | |
self.chunk_dim = chunk_dim | |
def forward(self, z: Tensor) -> Tensor: | |
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim) | |
if self.sample: | |
std = torch.exp(0.5 * logvar) | |
return mean + std * torch.randn_like(mean) | |
else: | |
return mean | |
class AutoEncoder(nn.Module): | |
def __init__(self, params: AutoEncoderParams): | |
super().__init__() | |
self.encoder = Encoder( | |
resolution=params.resolution, | |
in_channels=params.in_channels, | |
ch=params.ch, | |
ch_mult=params.ch_mult, | |
num_res_blocks=params.num_res_blocks, | |
z_channels=params.z_channels, | |
) | |
self.decoder = Decoder( | |
resolution=params.resolution, | |
in_channels=params.in_channels, | |
ch=params.ch, | |
out_ch=params.out_ch, | |
ch_mult=params.ch_mult, | |
num_res_blocks=params.num_res_blocks, | |
z_channels=params.z_channels, | |
) | |
self.reg = DiagonalGaussian() | |
self.scale_factor = params.scale_factor | |
self.shift_factor = params.shift_factor | |
def device(self) -> torch.device: | |
return next(self.parameters()).device | |
def dtype(self) -> torch.dtype: | |
return next(self.parameters()).dtype | |
def encode(self, x: Tensor) -> Tensor: | |
z = self.reg(self.encoder(x)) | |
z = self.scale_factor * (z - self.shift_factor) | |
return z | |
def decode(self, z: Tensor) -> Tensor: | |
z = z / self.scale_factor + self.shift_factor | |
return self.decoder(z) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.decode(self.encode(x)) | |
# endregion | |
# region config | |
class ModelSpec: | |
params: FluxParams | |
ae_params: AutoEncoderParams | |
ckpt_path: str | None | |
ae_path: str | None | |
# repo_id: str | None | |
# repo_flow: str | None | |
# repo_ae: str | None | |
configs = { | |
"dev": ModelSpec( | |
# repo_id="black-forest-labs/FLUX.1-dev", | |
# repo_flow="flux1-dev.sft", | |
# repo_ae="ae.sft", | |
ckpt_path=None, # os.getenv("FLUX_DEV"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=True, | |
), | |
ae_path=None, # os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
"schnell": ModelSpec( | |
# repo_id="black-forest-labs/FLUX.1-schnell", | |
# repo_flow="flux1-schnell.sft", | |
# repo_ae="ae.sft", | |
ckpt_path=None, # os.getenv("FLUX_SCHNELL"), | |
params=FluxParams( | |
in_channels=64, | |
vec_in_dim=768, | |
context_in_dim=4096, | |
hidden_size=3072, | |
mlp_ratio=4.0, | |
num_heads=24, | |
depth=19, | |
depth_single_blocks=38, | |
axes_dim=[16, 56, 56], | |
theta=10_000, | |
qkv_bias=True, | |
guidance_embed=False, | |
), | |
ae_path=None, # os.getenv("AE"), | |
ae_params=AutoEncoderParams( | |
resolution=256, | |
in_channels=3, | |
ch=128, | |
out_ch=3, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
z_channels=16, | |
scale_factor=0.3611, | |
shift_factor=0.1159, | |
), | |
), | |
} | |
# endregion | |
# region math | |
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, attn_mask: Optional[Tensor] = None) -> Tensor: | |
q, k = apply_rope(q, k, pe) | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) | |
x = rearrange(x, "B H L D -> B L (H D)") | |
return x | |
def rope(pos: Tensor, dim: int, theta: int) -> Tensor: | |
assert dim % 2 == 0 | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta**scale) | |
out = torch.einsum("...n,d->...nd", pos, omega) | |
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) | |
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
return out.float() | |
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
# endregion | |
# region layers | |
# for cpu_offload_checkpointing | |
def to_cuda(x): | |
if isinstance(x, torch.Tensor): | |
return x.cuda() | |
elif isinstance(x, (list, tuple)): | |
return [to_cuda(elem) for elem in x] | |
elif isinstance(x, dict): | |
return {k: to_cuda(v) for k, v in x.items()} | |
else: | |
return x | |
def to_cpu(x): | |
if isinstance(x, torch.Tensor): | |
return x.cpu() | |
elif isinstance(x, (list, tuple)): | |
return [to_cpu(elem) for elem in x] | |
elif isinstance(x, dict): | |
return {k: to_cpu(v) for k, v in x.items()} | |
else: | |
return x | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: Tensor) -> Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
self.gradient_checkpointing = False | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
def _forward(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
def forward(self, *args, **kwargs): | |
if self.training and self.gradient_checkpointing: | |
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs) | |
else: | |
return self._forward(*args, **kwargs) | |
# def forward(self, x): | |
# if self.training and self.gradient_checkpointing: | |
# def create_custom_forward(func): | |
# def custom_forward(*inputs): | |
# return func(*inputs) | |
# return custom_forward | |
# return torch.utils.checkpoint.checkpoint(create_custom_forward(self._forward), x, use_reentrant=USE_REENTRANT) | |
# else: | |
# return self._forward(x) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(dim)) | |
def forward(self, x: Tensor): | |
x_dtype = x.dtype | |
x = x.float() | |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
# return (x * rrms).to(dtype=x_dtype) * self.scale | |
return ((x * rrms) * self.scale.float()).to(dtype=x_dtype) | |
class QKNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
class SelfAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
# this is not called from DoubleStreamBlock/SingleStreamBlock because they uses attention function directly | |
def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
class Modulation(nn.Module): | |
def __init__(self, dim: int, double: bool): | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
return ( | |
ModulationOut(*out[:3]), | |
ModulationOut(*out[3:]) if self.is_double else None, | |
) | |
class DoubleStreamBlock(nn.Module): | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
def enable_gradient_checkpointing(self, cpu_offload: bool = False): | |
self.gradient_checkpointing = True | |
self.cpu_offload_checkpointing = cpu_offload | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
def _forward( | |
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None | |
) -> tuple[Tensor, Tensor]: | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
q = torch.cat((txt_q, img_q), dim=2) | |
k = torch.cat((txt_k, img_k), dim=2) | |
v = torch.cat((txt_v, img_v), dim=2) | |
# make attention mask if not None | |
attn_mask = None | |
if txt_attention_mask is not None: | |
# F.scaled_dot_product_attention expects attn_mask to be bool for binary mask | |
attn_mask = txt_attention_mask.to(torch.bool) # b, seq_len | |
attn_mask = torch.cat( | |
(attn_mask, torch.ones(attn_mask.shape[0], img.shape[1], device=attn_mask.device, dtype=torch.bool)), dim=1 | |
) # b, seq_len + img_len | |
# broadcast attn_mask to all heads | |
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1) | |
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img blocks | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
# calculate the txt blocks | |
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
return img, txt | |
def forward( | |
self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None | |
) -> tuple[Tensor, Tensor]: | |
if self.training and self.gradient_checkpointing: | |
if not self.cpu_offload_checkpointing: | |
return checkpoint(self._forward, img, txt, vec, pe, txt_attention_mask, use_reentrant=False) | |
# cpu offload checkpointing | |
def create_custom_forward(func): | |
def custom_forward(*inputs): | |
cuda_inputs = to_cuda(inputs) | |
outputs = func(*cuda_inputs) | |
return to_cpu(outputs) | |
return custom_forward | |
return torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self._forward), img, txt, vec, pe, txt_attention_mask, use_reentrant=False | |
) | |
else: | |
return self._forward(img, txt, vec, pe, txt_attention_mask) | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: float | None = None, | |
): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
def enable_gradient_checkpointing(self, cpu_offload: bool = False): | |
self.gradient_checkpointing = True | |
self.cpu_offload_checkpointing = cpu_offload | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
def _forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor: | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
# make attention mask if not None | |
attn_mask = None | |
if txt_attention_mask is not None: | |
# F.scaled_dot_product_attention expects attn_mask to be bool for binary mask | |
attn_mask = txt_attention_mask.to(torch.bool) # b, seq_len | |
attn_mask = torch.cat( | |
( | |
attn_mask, | |
torch.ones( | |
attn_mask.shape[0], x.shape[1] - txt_attention_mask.shape[1], device=attn_mask.device, dtype=torch.bool | |
), | |
), | |
dim=1, | |
) # b, seq_len + img_len = x_len | |
# broadcast attn_mask to all heads | |
attn_mask = attn_mask[:, None, None, :].expand(-1, q.shape[1], q.shape[2], -1) | |
# compute attention | |
attn = attention(q, k, v, pe=pe, attn_mask=attn_mask) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
return x + mod.gate * output | |
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, txt_attention_mask: Optional[Tensor] = None) -> Tensor: | |
if self.training and self.gradient_checkpointing: | |
if not self.cpu_offload_checkpointing: | |
return checkpoint(self._forward, x, vec, pe, txt_attention_mask, use_reentrant=False) | |
# cpu offload checkpointing | |
def create_custom_forward(func): | |
def custom_forward(*inputs): | |
cuda_inputs = to_cuda(inputs) | |
outputs = func(*cuda_inputs) | |
return to_cpu(outputs) | |
return custom_forward | |
return torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self._forward), x, vec, pe, txt_attention_mask, use_reentrant=False | |
) | |
else: | |
return self._forward(x, vec, pe, txt_attention_mask) | |
class LastLayer(nn.Module): | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x: Tensor, vec: Tensor) -> Tensor: | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |
# endregion | |
class Flux(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, params: FluxParams): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}") | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
self.blocks_to_swap = None | |
self.offloader_double = None | |
self.offloader_single = None | |
self.num_double_blocks = len(self.double_blocks) | |
self.num_single_blocks = len(self.single_blocks) | |
def device(self): | |
return next(self.parameters()).device | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def enable_gradient_checkpointing(self, cpu_offload: bool = False): | |
self.gradient_checkpointing = True | |
self.cpu_offload_checkpointing = cpu_offload | |
self.time_in.enable_gradient_checkpointing() | |
self.vector_in.enable_gradient_checkpointing() | |
if self.guidance_in.__class__ != nn.Identity: | |
self.guidance_in.enable_gradient_checkpointing() | |
for block in self.double_blocks + self.single_blocks: | |
block.enable_gradient_checkpointing(cpu_offload=cpu_offload) | |
print(f"FLUX: Gradient checkpointing enabled. CPU offload: {cpu_offload}") | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
self.cpu_offload_checkpointing = False | |
self.time_in.disable_gradient_checkpointing() | |
self.vector_in.disable_gradient_checkpointing() | |
if self.guidance_in.__class__ != nn.Identity: | |
self.guidance_in.disable_gradient_checkpointing() | |
for block in self.double_blocks + self.single_blocks: | |
block.disable_gradient_checkpointing() | |
print("FLUX: Gradient checkpointing disabled.") | |
def enable_block_swap(self, num_blocks: int, device: torch.device): | |
self.blocks_to_swap = num_blocks | |
double_blocks_to_swap = num_blocks // 2 | |
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 | |
assert double_blocks_to_swap <= self.num_double_blocks - 2 and single_blocks_to_swap <= self.num_single_blocks - 2, ( | |
f"Cannot swap more than {self.num_double_blocks - 2} double blocks and {self.num_single_blocks - 2} single blocks. " | |
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks." | |
) | |
self.offloader_double = custom_offloading_utils.ModelOffloader( | |
self.double_blocks, self.num_double_blocks, double_blocks_to_swap, device # , debug=True | |
) | |
self.offloader_single = custom_offloading_utils.ModelOffloader( | |
self.single_blocks, self.num_single_blocks, single_blocks_to_swap, device # , debug=True | |
) | |
print( | |
f"FLUX: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}." | |
) | |
def move_to_device_except_swap_blocks(self, device: torch.device): | |
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage | |
if self.blocks_to_swap: | |
save_double_blocks = self.double_blocks | |
save_single_blocks = self.single_blocks | |
self.double_blocks = None | |
self.single_blocks = None | |
self.to(device) | |
if self.blocks_to_swap: | |
self.double_blocks = save_double_blocks | |
self.single_blocks = save_single_blocks | |
def prepare_block_swap_before_forward(self): | |
if self.blocks_to_swap is None or self.blocks_to_swap == 0: | |
return | |
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks) | |
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks) | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor | None = None, | |
txt_attention_mask: Tensor | None = None, | |
) -> Tensor: | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
if not self.blocks_to_swap: | |
for block in self.double_blocks: | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
img = torch.cat((txt, img), 1) | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
else: | |
for block_idx, block in enumerate(self.double_blocks): | |
self.offloader_double.wait_for_block(block_idx) | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
self.offloader_double.submit_move_blocks(self.double_blocks, block_idx) | |
img = torch.cat((txt, img), 1) | |
for block_idx, block in enumerate(self.single_blocks): | |
self.offloader_single.wait_for_block(block_idx) | |
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
self.offloader_single.submit_move_blocks(self.single_blocks, block_idx) | |
img = img[:, txt.shape[1] :, ...] | |
if self.training and self.cpu_offload_checkpointing: | |
img = img.to(self.device) | |
vec = vec.to(self.device) | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
""" | |
class FluxUpper(nn.Module): | |
"" | |
Transformer model for flow matching on sequences. | |
"" | |
def __init__(self, params: FluxParams): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}") | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
self.guidance_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.gradient_checkpointing = False | |
@property | |
def device(self): | |
return next(self.parameters()).device | |
@property | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
self.time_in.enable_gradient_checkpointing() | |
self.vector_in.enable_gradient_checkpointing() | |
if self.guidance_in.__class__ != nn.Identity: | |
self.guidance_in.enable_gradient_checkpointing() | |
for block in self.double_blocks: | |
block.enable_gradient_checkpointing() | |
print("FLUX: Gradient checkpointing enabled.") | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
self.time_in.disable_gradient_checkpointing() | |
self.vector_in.disable_gradient_checkpointing() | |
if self.guidance_in.__class__ != nn.Identity: | |
self.guidance_in.disable_gradient_checkpointing() | |
for block in self.double_blocks: | |
block.disable_gradient_checkpointing() | |
print("FLUX: Gradient checkpointing disabled.") | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor | None = None, | |
txt_attention_mask: Tensor | None = None, | |
) -> Tensor: | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
for block in self.double_blocks: | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
return img, txt, vec, pe | |
class FluxLower(nn.Module): | |
"" | |
Transformer model for flow matching on sequences. | |
"" | |
def __init__(self, params: FluxParams): | |
super().__init__() | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.out_channels = params.in_channels | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
self.gradient_checkpointing = False | |
@property | |
def device(self): | |
return next(self.parameters()).device | |
@property | |
def dtype(self): | |
return next(self.parameters()).dtype | |
def enable_gradient_checkpointing(self): | |
self.gradient_checkpointing = True | |
for block in self.single_blocks: | |
block.enable_gradient_checkpointing() | |
print("FLUX: Gradient checkpointing enabled.") | |
def disable_gradient_checkpointing(self): | |
self.gradient_checkpointing = False | |
for block in self.single_blocks: | |
block.disable_gradient_checkpointing() | |
print("FLUX: Gradient checkpointing disabled.") | |
def forward( | |
self, | |
img: Tensor, | |
txt: Tensor, | |
vec: Tensor | None = None, | |
pe: Tensor | None = None, | |
txt_attention_mask: Tensor | None = None, | |
) -> Tensor: | |
img = torch.cat((txt, img), 1) | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe, txt_attention_mask=txt_attention_mask) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
""" | |