MakeAnything / library /sd3_utils.py
yiren98's picture
Upload 98 files
abd09b6 verified
from dataclasses import dataclass
import math
import re
from typing import Dict, List, Optional, Union
import torch
import safetensors
from safetensors.torch import load_file
from accelerate import init_empty_weights
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPConfig, CLIPTextConfig
from .utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import sd3_models
# TODO move some of functions to model_util.py
from library import sdxl_model_util
# region models
# TODO remove dependency on flux_utils
from library.utils import load_safetensors
from library.flux_utils import load_t5xxl as flux_utils_load_t5xxl
def analyze_state_dict_state(state_dict: Dict, prefix: str = ""):
logger.info(f"Analyzing state dict state...")
# analyze configs
patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2]
depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
num_patches = state_dict[f"{prefix}pos_embed"].shape[1]
pos_embed_max_size = round(math.sqrt(num_patches))
adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
context_shape = state_dict[f"{prefix}context_embedder.weight"].shape
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in state_dict.keys() else None
# x_block_self_attn_layers.append(int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1]))
x_block_self_attn_layers = []
re_attn = re.compile(r"\.(\d+)\.x_block\.attn2\.ln_k\.weight")
for key in list(state_dict.keys()):
m = re_attn.search(key)
if m:
x_block_self_attn_layers.append(int(m.group(1)))
context_embedder_in_features = context_shape[1]
context_embedder_out_features = context_shape[0]
# only supports 3-5-large, medium or 3-medium
if qk_norm is not None:
if len(x_block_self_attn_layers) == 0:
model_type = "3-5-large"
else:
model_type = "3-5-medium"
else:
model_type = "3-medium"
params = sd3_models.SD3Params(
patch_size=patch_size,
depth=depth,
num_patches=num_patches,
pos_embed_max_size=pos_embed_max_size,
adm_in_channels=adm_in_channels,
qk_norm=qk_norm,
x_block_self_attn_layers=x_block_self_attn_layers,
context_embedder_in_features=context_embedder_in_features,
context_embedder_out_features=context_embedder_out_features,
model_type=model_type,
)
logger.info(f"Analyzed state dict state: {params}")
return params
def load_mmdit(
state_dict: Dict, dtype: Optional[Union[str, torch.dtype]], device: Union[str, torch.device], attn_mode: str = "torch"
) -> sd3_models.MMDiT:
mmdit_sd = {}
mmdit_prefix = "model.diffusion_model."
for k in list(state_dict.keys()):
if k.startswith(mmdit_prefix):
mmdit_sd[k[len(mmdit_prefix) :]] = state_dict.pop(k)
# load MMDiT
logger.info("Building MMDit")
params = analyze_state_dict_state(mmdit_sd)
with init_empty_weights():
mmdit = sd3_models.create_sd3_mmdit(params, attn_mode)
logger.info("Loading state dict...")
info = mmdit.load_state_dict(mmdit_sd, strict=False, assign=True)
logger.info(f"Loaded MMDiT: {info}")
return mmdit
def load_clip_l(
clip_l_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
clip_l_sd = None
if clip_l_path is None:
if "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight" in state_dict:
# found clip_l: remove prefix "text_encoders.clip_l."
logger.info("clip_l is included in the checkpoint")
clip_l_sd = {}
prefix = "text_encoders.clip_l."
for k in list(state_dict.keys()):
if k.startswith(prefix):
clip_l_sd[k[len(prefix) :]] = state_dict.pop(k)
elif clip_l_path is None:
logger.info("clip_l is not included in the checkpoint and clip_l_path is not provided")
return None
# load clip_l
logger.info("Building CLIP-L")
config = CLIPTextConfig(
vocab_size=49408,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=768,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
clip = CLIPTextModelWithProjection(config)
if clip_l_sd is None:
logger.info(f"Loading state dict from {clip_l_path}")
clip_l_sd = load_safetensors(clip_l_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
if "text_projection.weight" not in clip_l_sd:
logger.info("Adding text_projection.weight to clip_l_sd")
clip_l_sd["text_projection.weight"] = torch.eye(768, dtype=dtype, device=device)
info = clip.load_state_dict(clip_l_sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-L: {info}")
return clip
def load_clip_g(
clip_g_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
clip_g_sd = None
if state_dict is not None:
if "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight" in state_dict:
# found clip_g: remove prefix "text_encoders.clip_g."
logger.info("clip_g is included in the checkpoint")
clip_g_sd = {}
prefix = "text_encoders.clip_g."
for k in list(state_dict.keys()):
if k.startswith(prefix):
clip_g_sd[k[len(prefix) :]] = state_dict.pop(k)
elif clip_g_path is None:
logger.info("clip_g is not included in the checkpoint and clip_g_path is not provided")
return None
# load clip_g
logger.info("Building CLIP-G")
config = CLIPTextConfig(
vocab_size=49408,
hidden_size=1280,
intermediate_size=5120,
num_hidden_layers=32,
num_attention_heads=20,
max_position_embeddings=77,
hidden_act="gelu",
layer_norm_eps=1e-05,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
model_type="clip_text_model",
projection_dim=1280,
# torch_dtype="float32",
# transformers_version="4.25.0.dev0",
)
with init_empty_weights():
clip = CLIPTextModelWithProjection(config)
if clip_g_sd is None:
logger.info(f"Loading state dict from {clip_g_path}")
clip_g_sd = load_safetensors(clip_g_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)
info = clip.load_state_dict(clip_g_sd, strict=False, assign=True)
logger.info(f"Loaded CLIP-G: {info}")
return clip
def load_t5xxl(
t5xxl_path: Optional[str],
dtype: Optional[Union[str, torch.dtype]],
device: Union[str, torch.device],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
t5xxl_sd = None
if state_dict is not None:
if "text_encoders.t5xxl.transformer.encoder.block.0.layer.0.SelfAttention.k.weight" in state_dict:
# found t5xxl: remove prefix "text_encoders.t5xxl."
logger.info("t5xxl is included in the checkpoint")
t5xxl_sd = {}
prefix = "text_encoders.t5xxl."
for k in list(state_dict.keys()):
if k.startswith(prefix):
t5xxl_sd[k[len(prefix) :]] = state_dict.pop(k)
elif t5xxl_path is None:
logger.info("t5xxl is not included in the checkpoint and t5xxl_path is not provided")
return None
return flux_utils_load_t5xxl(t5xxl_path, dtype, device, disable_mmap, state_dict=t5xxl_sd)
def load_vae(
vae_path: Optional[str],
vae_dtype: Optional[Union[str, torch.dtype]],
device: Optional[Union[str, torch.device]],
disable_mmap: bool = False,
state_dict: Optional[Dict] = None,
):
vae_sd = {}
if vae_path:
logger.info(f"Loading VAE from {vae_path}...")
vae_sd = load_safetensors(vae_path, device, disable_mmap)
else:
# remove prefix "first_stage_model."
vae_sd = {}
vae_prefix = "first_stage_model."
for k in list(state_dict.keys()):
if k.startswith(vae_prefix):
vae_sd[k[len(vae_prefix) :]] = state_dict.pop(k)
logger.info("Building VAE")
vae = sd3_models.SDVAE(vae_dtype, device)
logger.info("Loading state dict...")
info = vae.load_state_dict(vae_sd)
logger.info(f"Loaded VAE: {info}")
vae.to(device=device, dtype=vae_dtype) # make sure it's in the right device and dtype
return vae
# endregion
class ModelSamplingDiscreteFlow:
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
def __init__(self, shift=1.0):
self.shift = shift
timesteps = 1000
self.sigmas = self.sigma(torch.arange(1, timesteps + 1, 1))
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma * 1000
def sigma(self, timestep: torch.Tensor):
timestep = timestep / 1000.0
if self.shift == 1.0:
return timestep
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
# assert max_denoise is False, "max_denoise not implemented"
# max_denoise is always True, I'm not sure why it's there
return sigma * noise + (1.0 - sigma) * latent_image