Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
import math | |
import re | |
from typing import Dict, List, Optional, Union | |
import torch | |
import safetensors | |
from safetensors.torch import load_file | |
from accelerate import init_empty_weights | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPConfig, CLIPTextConfig | |
from .utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
from library import sd3_models | |
# TODO move some of functions to model_util.py | |
from library import sdxl_model_util | |
# region models | |
# TODO remove dependency on flux_utils | |
from library.utils import load_safetensors | |
from library.flux_utils import load_t5xxl as flux_utils_load_t5xxl | |
def analyze_state_dict_state(state_dict: Dict, prefix: str = ""): | |
logger.info(f"Analyzing state dict state...") | |
# analyze configs | |
patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2] | |
depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64 | |
num_patches = state_dict[f"{prefix}pos_embed"].shape[1] | |
pos_embed_max_size = round(math.sqrt(num_patches)) | |
adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1] | |
context_shape = state_dict[f"{prefix}context_embedder.weight"].shape | |
qk_norm = "rms" if f"{prefix}joint_blocks.0.context_block.attn.ln_k.weight" in state_dict.keys() else None | |
# x_block_self_attn_layers.append(int(key.split(".x_block.attn2.ln_k.weight")[0].split(".")[-1])) | |
x_block_self_attn_layers = [] | |
re_attn = re.compile(r"\.(\d+)\.x_block\.attn2\.ln_k\.weight") | |
for key in list(state_dict.keys()): | |
m = re_attn.search(key) | |
if m: | |
x_block_self_attn_layers.append(int(m.group(1))) | |
context_embedder_in_features = context_shape[1] | |
context_embedder_out_features = context_shape[0] | |
# only supports 3-5-large, medium or 3-medium | |
if qk_norm is not None: | |
if len(x_block_self_attn_layers) == 0: | |
model_type = "3-5-large" | |
else: | |
model_type = "3-5-medium" | |
else: | |
model_type = "3-medium" | |
params = sd3_models.SD3Params( | |
patch_size=patch_size, | |
depth=depth, | |
num_patches=num_patches, | |
pos_embed_max_size=pos_embed_max_size, | |
adm_in_channels=adm_in_channels, | |
qk_norm=qk_norm, | |
x_block_self_attn_layers=x_block_self_attn_layers, | |
context_embedder_in_features=context_embedder_in_features, | |
context_embedder_out_features=context_embedder_out_features, | |
model_type=model_type, | |
) | |
logger.info(f"Analyzed state dict state: {params}") | |
return params | |
def load_mmdit( | |
state_dict: Dict, dtype: Optional[Union[str, torch.dtype]], device: Union[str, torch.device], attn_mode: str = "torch" | |
) -> sd3_models.MMDiT: | |
mmdit_sd = {} | |
mmdit_prefix = "model.diffusion_model." | |
for k in list(state_dict.keys()): | |
if k.startswith(mmdit_prefix): | |
mmdit_sd[k[len(mmdit_prefix) :]] = state_dict.pop(k) | |
# load MMDiT | |
logger.info("Building MMDit") | |
params = analyze_state_dict_state(mmdit_sd) | |
with init_empty_weights(): | |
mmdit = sd3_models.create_sd3_mmdit(params, attn_mode) | |
logger.info("Loading state dict...") | |
info = mmdit.load_state_dict(mmdit_sd, strict=False, assign=True) | |
logger.info(f"Loaded MMDiT: {info}") | |
return mmdit | |
def load_clip_l( | |
clip_l_path: Optional[str], | |
dtype: Optional[Union[str, torch.dtype]], | |
device: Union[str, torch.device], | |
disable_mmap: bool = False, | |
state_dict: Optional[Dict] = None, | |
): | |
clip_l_sd = None | |
if clip_l_path is None: | |
if "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight" in state_dict: | |
# found clip_l: remove prefix "text_encoders.clip_l." | |
logger.info("clip_l is included in the checkpoint") | |
clip_l_sd = {} | |
prefix = "text_encoders.clip_l." | |
for k in list(state_dict.keys()): | |
if k.startswith(prefix): | |
clip_l_sd[k[len(prefix) :]] = state_dict.pop(k) | |
elif clip_l_path is None: | |
logger.info("clip_l is not included in the checkpoint and clip_l_path is not provided") | |
return None | |
# load clip_l | |
logger.info("Building CLIP-L") | |
config = CLIPTextConfig( | |
vocab_size=49408, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
max_position_embeddings=77, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-05, | |
dropout=0.0, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
model_type="clip_text_model", | |
projection_dim=768, | |
# torch_dtype="float32", | |
# transformers_version="4.25.0.dev0", | |
) | |
with init_empty_weights(): | |
clip = CLIPTextModelWithProjection(config) | |
if clip_l_sd is None: | |
logger.info(f"Loading state dict from {clip_l_path}") | |
clip_l_sd = load_safetensors(clip_l_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
if "text_projection.weight" not in clip_l_sd: | |
logger.info("Adding text_projection.weight to clip_l_sd") | |
clip_l_sd["text_projection.weight"] = torch.eye(768, dtype=dtype, device=device) | |
info = clip.load_state_dict(clip_l_sd, strict=False, assign=True) | |
logger.info(f"Loaded CLIP-L: {info}") | |
return clip | |
def load_clip_g( | |
clip_g_path: Optional[str], | |
dtype: Optional[Union[str, torch.dtype]], | |
device: Union[str, torch.device], | |
disable_mmap: bool = False, | |
state_dict: Optional[Dict] = None, | |
): | |
clip_g_sd = None | |
if state_dict is not None: | |
if "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight" in state_dict: | |
# found clip_g: remove prefix "text_encoders.clip_g." | |
logger.info("clip_g is included in the checkpoint") | |
clip_g_sd = {} | |
prefix = "text_encoders.clip_g." | |
for k in list(state_dict.keys()): | |
if k.startswith(prefix): | |
clip_g_sd[k[len(prefix) :]] = state_dict.pop(k) | |
elif clip_g_path is None: | |
logger.info("clip_g is not included in the checkpoint and clip_g_path is not provided") | |
return None | |
# load clip_g | |
logger.info("Building CLIP-G") | |
config = CLIPTextConfig( | |
vocab_size=49408, | |
hidden_size=1280, | |
intermediate_size=5120, | |
num_hidden_layers=32, | |
num_attention_heads=20, | |
max_position_embeddings=77, | |
hidden_act="gelu", | |
layer_norm_eps=1e-05, | |
dropout=0.0, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
pad_token_id=1, | |
bos_token_id=0, | |
eos_token_id=2, | |
model_type="clip_text_model", | |
projection_dim=1280, | |
# torch_dtype="float32", | |
# transformers_version="4.25.0.dev0", | |
) | |
with init_empty_weights(): | |
clip = CLIPTextModelWithProjection(config) | |
if clip_g_sd is None: | |
logger.info(f"Loading state dict from {clip_g_path}") | |
clip_g_sd = load_safetensors(clip_g_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) | |
info = clip.load_state_dict(clip_g_sd, strict=False, assign=True) | |
logger.info(f"Loaded CLIP-G: {info}") | |
return clip | |
def load_t5xxl( | |
t5xxl_path: Optional[str], | |
dtype: Optional[Union[str, torch.dtype]], | |
device: Union[str, torch.device], | |
disable_mmap: bool = False, | |
state_dict: Optional[Dict] = None, | |
): | |
t5xxl_sd = None | |
if state_dict is not None: | |
if "text_encoders.t5xxl.transformer.encoder.block.0.layer.0.SelfAttention.k.weight" in state_dict: | |
# found t5xxl: remove prefix "text_encoders.t5xxl." | |
logger.info("t5xxl is included in the checkpoint") | |
t5xxl_sd = {} | |
prefix = "text_encoders.t5xxl." | |
for k in list(state_dict.keys()): | |
if k.startswith(prefix): | |
t5xxl_sd[k[len(prefix) :]] = state_dict.pop(k) | |
elif t5xxl_path is None: | |
logger.info("t5xxl is not included in the checkpoint and t5xxl_path is not provided") | |
return None | |
return flux_utils_load_t5xxl(t5xxl_path, dtype, device, disable_mmap, state_dict=t5xxl_sd) | |
def load_vae( | |
vae_path: Optional[str], | |
vae_dtype: Optional[Union[str, torch.dtype]], | |
device: Optional[Union[str, torch.device]], | |
disable_mmap: bool = False, | |
state_dict: Optional[Dict] = None, | |
): | |
vae_sd = {} | |
if vae_path: | |
logger.info(f"Loading VAE from {vae_path}...") | |
vae_sd = load_safetensors(vae_path, device, disable_mmap) | |
else: | |
# remove prefix "first_stage_model." | |
vae_sd = {} | |
vae_prefix = "first_stage_model." | |
for k in list(state_dict.keys()): | |
if k.startswith(vae_prefix): | |
vae_sd[k[len(vae_prefix) :]] = state_dict.pop(k) | |
logger.info("Building VAE") | |
vae = sd3_models.SDVAE(vae_dtype, device) | |
logger.info("Loading state dict...") | |
info = vae.load_state_dict(vae_sd) | |
logger.info(f"Loaded VAE: {info}") | |
vae.to(device=device, dtype=vae_dtype) # make sure it's in the right device and dtype | |
return vae | |
# endregion | |
class ModelSamplingDiscreteFlow: | |
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models""" | |
def __init__(self, shift=1.0): | |
self.shift = shift | |
timesteps = 1000 | |
self.sigmas = self.sigma(torch.arange(1, timesteps + 1, 1)) | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
return sigma * 1000 | |
def sigma(self, timestep: torch.Tensor): | |
timestep = timestep / 1000.0 | |
if self.shift == 1.0: | |
return timestep | |
return self.shift * timestep / (1 + (self.shift - 1) * timestep) | |
def calculate_denoised(self, sigma, model_output, model_input): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
return model_input - model_output * sigma | |
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): | |
# assert max_denoise is False, "max_denoise not implemented" | |
# max_denoise is always True, I'm not sure why it's there | |
return sigma * noise + (1.0 - sigma) * latent_image | |