MakeAnything / library /sdxl_original_control_net.py
yiren98's picture
Upload 98 files
abd09b6 verified
# some parts are modified from Diffusers library (Apache License 2.0)
import math
from types import SimpleNamespace
from typing import Any, Optional
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
from library import sdxl_original_unet
from library.sdxl_model_util import convert_sdxl_unet_state_dict_to_diffusers, convert_diffusers_unet_state_dict_to_sdxl
class ControlNetConditioningEmbedding(nn.Module):
def __init__(self):
super().__init__()
dims = [16, 32, 96, 256]
self.conv_in = nn.Conv2d(3, dims[0], kernel_size=3, padding=1)
self.blocks = nn.ModuleList([])
for i in range(len(dims) - 1):
channel_in = dims[i]
channel_out = dims[i + 1]
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
self.conv_out = nn.Conv2d(dims[-1], 320, kernel_size=3, padding=1)
nn.init.zeros_(self.conv_out.weight) # zero module weight
nn.init.zeros_(self.conv_out.bias) # zero module bias
def forward(self, x):
x = self.conv_in(x)
x = F.silu(x)
for block in self.blocks:
x = block(x)
x = F.silu(x)
x = self.conv_out(x)
return x
class SdxlControlNet(sdxl_original_unet.SdxlUNet2DConditionModel):
def __init__(self, multiplier: Optional[float] = None, **kwargs):
super().__init__(**kwargs)
self.multiplier = multiplier
# remove unet layers
self.output_blocks = nn.ModuleList([])
del self.out
self.controlnet_cond_embedding = ControlNetConditioningEmbedding()
dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280]
self.controlnet_down_blocks = nn.ModuleList([])
for dim in dims:
self.controlnet_down_blocks.append(nn.Conv2d(dim, dim, kernel_size=1))
nn.init.zeros_(self.controlnet_down_blocks[-1].weight) # zero module weight
nn.init.zeros_(self.controlnet_down_blocks[-1].bias) # zero module bias
self.controlnet_mid_block = nn.Conv2d(1280, 1280, kernel_size=1)
nn.init.zeros_(self.controlnet_mid_block.weight) # zero module weight
nn.init.zeros_(self.controlnet_mid_block.bias) # zero module bias
def init_from_unet(self, unet: sdxl_original_unet.SdxlUNet2DConditionModel):
unet_sd = unet.state_dict()
unet_sd = {k: v for k, v in unet_sd.items() if not k.startswith("out")}
sd = super().state_dict()
sd.update(unet_sd)
info = super().load_state_dict(sd, strict=True, assign=True)
return info
def load_state_dict(self, state_dict: dict, strict: bool = True, assign: bool = True) -> Any:
# convert state_dict to SAI format
unet_sd = {}
for k in list(state_dict.keys()):
if not k.startswith("controlnet_"):
unet_sd[k] = state_dict.pop(k)
unet_sd = convert_diffusers_unet_state_dict_to_sdxl(unet_sd)
state_dict.update(unet_sd)
super().load_state_dict(state_dict, strict=strict, assign=assign)
def state_dict(self, destination=None, prefix="", keep_vars=False):
# convert state_dict to Diffusers format
state_dict = super().state_dict(destination, prefix, keep_vars)
control_net_sd = {}
for k in list(state_dict.keys()):
if k.startswith("controlnet_"):
control_net_sd[k] = state_dict.pop(k)
state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict)
state_dict.update(control_net_sd)
return state_dict
def forward(
self,
x: torch.Tensor,
timesteps: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None,
cond_image: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
if isinstance(layer, sdxl_original_unet.ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, sdxl_original_unet.Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
h = x
multiplier = self.multiplier if self.multiplier is not None else 1.0
hs = []
for i, module in enumerate(self.input_blocks):
h = call_module(module, h, emb, context)
if i == 0:
h = self.controlnet_cond_embedding(cond_image) + h
hs.append(self.controlnet_down_blocks[i](h) * multiplier)
h = call_module(self.middle_block, h, emb, context)
h = self.controlnet_mid_block(h) * multiplier
return hs, h
class SdxlControlledUNet(sdxl_original_unet.SdxlUNet2DConditionModel):
"""
This class is for training purpose only.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, x, timesteps=None, context=None, y=None, input_resi_add=None, mid_add=None, **kwargs):
# broadcast timesteps to batch dimension
timesteps = timesteps.expand(x.shape[0])
hs = []
t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}"
assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}"
emb = emb + self.label_emb(y)
def call_module(module, h, emb, context):
x = h
for layer in module:
if isinstance(layer, sdxl_original_unet.ResnetBlock2D):
x = layer(x, emb)
elif isinstance(layer, sdxl_original_unet.Transformer2DModel):
x = layer(x, context)
else:
x = layer(x)
return x
h = x
for module in self.input_blocks:
h = call_module(module, h, emb, context)
hs.append(h)
h = call_module(self.middle_block, h, emb, context)
h = h + mid_add
for module in self.output_blocks:
resi = hs.pop() + input_resi_add.pop()
h = torch.cat([h, resi], dim=1)
h = call_module(module, h, emb, context)
h = h.type(x.dtype)
h = call_module(self.out, h, emb, context)
return h
if __name__ == "__main__":
import time
logger.info("create unet")
unet = SdxlControlledUNet()
unet.to("cuda", torch.bfloat16)
unet.set_use_sdpa(True)
unet.set_gradient_checkpointing(True)
unet.train()
logger.info("create control_net")
control_net = SdxlControlNet()
control_net.to("cuda")
control_net.set_use_sdpa(True)
control_net.set_gradient_checkpointing(True)
control_net.train()
logger.info("Initialize control_net from unet")
control_net.init_from_unet(unet)
unet.requires_grad_(False)
control_net.requires_grad_(True)
# 使用メモリ量確認用の疑似学習ループ
logger.info("preparing optimizer")
# optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working
import bitsandbytes
optimizer = bitsandbytes.adam.Adam8bit(control_net.parameters(), lr=1e-3) # not working
# optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2
# import transformers
# optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2
scaler = torch.cuda.amp.GradScaler(enabled=True)
logger.info("start training")
steps = 10
batch_size = 1
for step in range(steps):
logger.info(f"step {step}")
if step == 1:
time_start = time.perf_counter()
x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024
t = torch.randint(low=0, high=1000, size=(batch_size,), device="cuda")
txt = torch.randn(batch_size, 77, 2048).cuda()
vector = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda()
cond_img = torch.rand(batch_size, 3, 1024, 1024).cuda()
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16):
input_resi_add, mid_add = control_net(x, t, txt, vector, cond_img)
output = unet(x, t, txt, vector, input_resi_add, mid_add)
target = torch.randn_like(output)
loss = torch.nn.functional.mse_loss(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
time_end = time.perf_counter()
logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")
logger.info("finish training")
sd = control_net.state_dict()
from safetensors.torch import save_file
save_file(sd, r"E:\Work\SD\Tmp\sdxl\ctrl\control_net.safetensors")