MakeAnything / library /strategy_sd3.py
yiren98's picture
Upload 98 files
abd09b6 verified
import os
import glob
import random
from typing import Any, List, Optional, Tuple, Union
import torch
import numpy as np
from transformers import CLIPTokenizer, T5TokenizerFast, CLIPTextModel, CLIPTextModelWithProjection, T5EncoderModel
from library import sd3_utils, train_util
from library import sd3_models
from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14"
CLIP_G_TOKENIZER_ID = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl"
class Sd3TokenizeStrategy(TokenizeStrategy):
def __init__(self, t5xxl_max_length: int = 256, tokenizer_cache_dir: Optional[str] = None) -> None:
self.t5xxl_max_length = t5xxl_max_length
self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.clip_g = self._load_tokenizer(CLIPTokenizer, CLIP_G_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.clip_g.pad_token_id = 0 # use 0 as pad token for clip_g
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
g_tokens = self.clip_g(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt")
l_attn_mask = l_tokens["attention_mask"]
g_attn_mask = g_tokens["attention_mask"]
t5_attn_mask = t5_tokens["attention_mask"]
l_tokens = l_tokens["input_ids"]
g_tokens = g_tokens["input_ids"]
t5_tokens = t5_tokens["input_ids"]
return [l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask]
class Sd3TextEncodingStrategy(TextEncodingStrategy):
def __init__(
self,
apply_lg_attn_mask: Optional[bool] = None,
apply_t5_attn_mask: Optional[bool] = None,
l_dropout_rate: float = 0.0,
g_dropout_rate: float = 0.0,
t5_dropout_rate: float = 0.0,
) -> None:
"""
Args:
apply_t5_attn_mask: Default value for apply_t5_attn_mask.
"""
self.apply_lg_attn_mask = apply_lg_attn_mask
self.apply_t5_attn_mask = apply_t5_attn_mask
self.l_dropout_rate = l_dropout_rate
self.g_dropout_rate = g_dropout_rate
self.t5_dropout_rate = t5_dropout_rate
def encode_tokens(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens: List[torch.Tensor],
apply_lg_attn_mask: Optional[bool] = False,
apply_t5_attn_mask: Optional[bool] = False,
enable_dropout: bool = True,
) -> List[torch.Tensor]:
"""
returned embeddings are not masked
"""
clip_l, clip_g, t5xxl = models
clip_l: Optional[CLIPTextModel]
clip_g: Optional[CLIPTextModelWithProjection]
t5xxl: Optional[T5EncoderModel]
if apply_lg_attn_mask is None:
apply_lg_attn_mask = self.apply_lg_attn_mask
if apply_t5_attn_mask is None:
apply_t5_attn_mask = self.apply_t5_attn_mask
l_tokens, g_tokens, t5_tokens, l_attn_mask, g_attn_mask, t5_attn_mask = tokens
# dropout: if enable_dropout is False, dropout is not applied. dropout means zeroing out embeddings
if l_tokens is None or clip_l is None:
assert g_tokens is None, "g_tokens must be None if l_tokens is None"
lg_out = None
lg_pooled = None
l_attn_mask = None
g_attn_mask = None
else:
assert g_tokens is not None, "g_tokens must not be None if l_tokens is not None"
# drop some members of the batch: we do not call clip_l and clip_g for dropped members
batch_size, l_seq_len = l_tokens.shape
g_seq_len = g_tokens.shape[1]
non_drop_l_indices = []
non_drop_g_indices = []
for i in range(l_tokens.shape[0]):
drop_l = enable_dropout and (self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate)
drop_g = enable_dropout and (self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate)
if not drop_l:
non_drop_l_indices.append(i)
if not drop_g:
non_drop_g_indices.append(i)
# filter out dropped members
if len(non_drop_l_indices) > 0 and len(non_drop_l_indices) < batch_size:
l_tokens = l_tokens[non_drop_l_indices]
l_attn_mask = l_attn_mask[non_drop_l_indices]
if len(non_drop_g_indices) > 0 and len(non_drop_g_indices) < batch_size:
g_tokens = g_tokens[non_drop_g_indices]
g_attn_mask = g_attn_mask[non_drop_g_indices]
# call clip_l for non-dropped members
if len(non_drop_l_indices) > 0:
nd_l_attn_mask = l_attn_mask.to(clip_l.device)
prompt_embeds = clip_l(
l_tokens.to(clip_l.device), nd_l_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True
)
nd_l_pooled = prompt_embeds[0]
nd_l_out = prompt_embeds.hidden_states[-2]
if len(non_drop_g_indices) > 0:
nd_g_attn_mask = g_attn_mask.to(clip_g.device)
prompt_embeds = clip_g(
g_tokens.to(clip_g.device), nd_g_attn_mask if apply_lg_attn_mask else None, output_hidden_states=True
)
nd_g_pooled = prompt_embeds[0]
nd_g_out = prompt_embeds.hidden_states[-2]
# fill in the dropped members
if len(non_drop_l_indices) == batch_size:
l_pooled = nd_l_pooled
l_out = nd_l_out
else:
# model output is always float32 because of the models are wrapped with Accelerator
l_pooled = torch.zeros((batch_size, 768), device=clip_l.device, dtype=torch.float32)
l_out = torch.zeros((batch_size, l_seq_len, 768), device=clip_l.device, dtype=torch.float32)
l_attn_mask = torch.zeros((batch_size, l_seq_len), device=clip_l.device, dtype=l_attn_mask.dtype)
if len(non_drop_l_indices) > 0:
l_pooled[non_drop_l_indices] = nd_l_pooled
l_out[non_drop_l_indices] = nd_l_out
l_attn_mask[non_drop_l_indices] = nd_l_attn_mask
if len(non_drop_g_indices) == batch_size:
g_pooled = nd_g_pooled
g_out = nd_g_out
else:
g_pooled = torch.zeros((batch_size, 1280), device=clip_g.device, dtype=torch.float32)
g_out = torch.zeros((batch_size, g_seq_len, 1280), device=clip_g.device, dtype=torch.float32)
g_attn_mask = torch.zeros((batch_size, g_seq_len), device=clip_g.device, dtype=g_attn_mask.dtype)
if len(non_drop_g_indices) > 0:
g_pooled[non_drop_g_indices] = nd_g_pooled
g_out[non_drop_g_indices] = nd_g_out
g_attn_mask[non_drop_g_indices] = nd_g_attn_mask
lg_pooled = torch.cat((l_pooled, g_pooled), dim=-1)
lg_out = torch.cat([l_out, g_out], dim=-1)
if t5xxl is None or t5_tokens is None:
t5_out = None
t5_attn_mask = None
else:
# drop some members of the batch: we do not call t5xxl for dropped members
batch_size, t5_seq_len = t5_tokens.shape
non_drop_t5_indices = []
for i in range(t5_tokens.shape[0]):
drop_t5 = enable_dropout and (self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate)
if not drop_t5:
non_drop_t5_indices.append(i)
# filter out dropped members
if len(non_drop_t5_indices) > 0 and len(non_drop_t5_indices) < batch_size:
t5_tokens = t5_tokens[non_drop_t5_indices]
t5_attn_mask = t5_attn_mask[non_drop_t5_indices]
# call t5xxl for non-dropped members
if len(non_drop_t5_indices) > 0:
nd_t5_attn_mask = t5_attn_mask.to(t5xxl.device)
nd_t5_out, _ = t5xxl(
t5_tokens.to(t5xxl.device),
nd_t5_attn_mask if apply_t5_attn_mask else None,
return_dict=False,
output_hidden_states=True,
)
# fill in the dropped members
if len(non_drop_t5_indices) == batch_size:
t5_out = nd_t5_out
else:
t5_out = torch.zeros((batch_size, t5_seq_len, 4096), device=t5xxl.device, dtype=torch.float32)
t5_attn_mask = torch.zeros((batch_size, t5_seq_len), device=t5xxl.device, dtype=t5_attn_mask.dtype)
if len(non_drop_t5_indices) > 0:
t5_out[non_drop_t5_indices] = nd_t5_out
t5_attn_mask[non_drop_t5_indices] = nd_t5_attn_mask
# masks are used for attention masking in transformer
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def drop_cached_text_encoder_outputs(
self,
lg_out: torch.Tensor,
t5_out: torch.Tensor,
lg_pooled: torch.Tensor,
l_attn_mask: torch.Tensor,
g_attn_mask: torch.Tensor,
t5_attn_mask: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# dropout: if enable_dropout is True, dropout is not applied. dropout means zeroing out embeddings
if lg_out is not None:
for i in range(lg_out.shape[0]):
drop_l = self.l_dropout_rate > 0.0 and random.random() < self.l_dropout_rate
if drop_l:
lg_out[i, :, :768] = torch.zeros_like(lg_out[i, :, :768])
lg_pooled[i, :768] = torch.zeros_like(lg_pooled[i, :768])
if l_attn_mask is not None:
l_attn_mask[i] = torch.zeros_like(l_attn_mask[i])
drop_g = self.g_dropout_rate > 0.0 and random.random() < self.g_dropout_rate
if drop_g:
lg_out[i, :, 768:] = torch.zeros_like(lg_out[i, :, 768:])
lg_pooled[i, 768:] = torch.zeros_like(lg_pooled[i, 768:])
if g_attn_mask is not None:
g_attn_mask[i] = torch.zeros_like(g_attn_mask[i])
if t5_out is not None:
for i in range(t5_out.shape[0]):
drop_t5 = self.t5_dropout_rate > 0.0 and random.random() < self.t5_dropout_rate
if drop_t5:
t5_out[i] = torch.zeros_like(t5_out[i])
if t5_attn_mask is not None:
t5_attn_mask[i] = torch.zeros_like(t5_attn_mask[i])
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def concat_encodings(
self, lg_out: torch.Tensor, t5_out: Optional[torch.Tensor], lg_pooled: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
if t5_out is None:
t5_out = torch.zeros((lg_out.shape[0], 77, 4096), device=lg_out.device, dtype=lg_out.dtype)
return torch.cat([lg_out, t5_out], dim=-2), lg_pooled
class Sd3TextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_sd3_te.npz"
def __init__(
self,
cache_to_disk: bool,
batch_size: int,
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
apply_lg_attn_mask: bool = False,
apply_t5_attn_mask: bool = False,
) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial)
self.apply_lg_attn_mask = apply_lg_attn_mask
self.apply_t5_attn_mask = apply_t5_attn_mask
def get_outputs_npz_path(self, image_abs_path: str) -> str:
return os.path.splitext(image_abs_path)[0] + Sd3TextEncoderOutputsCachingStrategy.SD3_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX
def is_disk_cached_outputs_expected(self, npz_path: str):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
try:
npz = np.load(npz_path)
if "lg_out" not in npz:
return False
if "lg_pooled" not in npz:
return False
if "clip_l_attn_mask" not in npz or "clip_g_attn_mask" not in npz: # necessary even if not used
return False
if "apply_lg_attn_mask" not in npz:
return False
if "t5_out" not in npz:
return False
if "t5_attn_mask" not in npz:
return False
npz_apply_lg_attn_mask = npz["apply_lg_attn_mask"]
if npz_apply_lg_attn_mask != self.apply_lg_attn_mask:
return False
if "apply_t5_attn_mask" not in npz:
return False
npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"]
if npz_apply_t5_attn_mask != self.apply_t5_attn_mask:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
data = np.load(npz_path)
lg_out = data["lg_out"]
lg_pooled = data["lg_pooled"]
t5_out = data["t5_out"]
l_attn_mask = data["clip_l_attn_mask"]
g_attn_mask = data["clip_g_attn_mask"]
t5_attn_mask = data["t5_attn_mask"]
# apply_t5_attn_mask and apply_lg_attn_mask are same as self.apply_t5_attn_mask and self.apply_lg_attn_mask
return [lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask]
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
):
sd3_text_encoding_strategy: Sd3TextEncodingStrategy = text_encoding_strategy
captions = [info.caption for info in infos]
tokens_and_masks = tokenize_strategy.tokenize(captions)
with torch.no_grad():
# always disable dropout during caching
lg_out, t5_out, lg_pooled, l_attn_mask, g_attn_mask, t5_attn_mask = sd3_text_encoding_strategy.encode_tokens(
tokenize_strategy,
models,
tokens_and_masks,
apply_lg_attn_mask=self.apply_lg_attn_mask,
apply_t5_attn_mask=self.apply_t5_attn_mask,
enable_dropout=False,
)
if lg_out.dtype == torch.bfloat16:
lg_out = lg_out.float()
if lg_pooled.dtype == torch.bfloat16:
lg_pooled = lg_pooled.float()
if t5_out.dtype == torch.bfloat16:
t5_out = t5_out.float()
lg_out = lg_out.cpu().numpy()
lg_pooled = lg_pooled.cpu().numpy()
t5_out = t5_out.cpu().numpy()
l_attn_mask = tokens_and_masks[3].cpu().numpy()
g_attn_mask = tokens_and_masks[4].cpu().numpy()
t5_attn_mask = tokens_and_masks[5].cpu().numpy()
for i, info in enumerate(infos):
lg_out_i = lg_out[i]
t5_out_i = t5_out[i]
lg_pooled_i = lg_pooled[i]
l_attn_mask_i = l_attn_mask[i]
g_attn_mask_i = g_attn_mask[i]
t5_attn_mask_i = t5_attn_mask[i]
apply_lg_attn_mask = self.apply_lg_attn_mask
apply_t5_attn_mask = self.apply_t5_attn_mask
if self.cache_to_disk:
np.savez(
info.text_encoder_outputs_npz,
lg_out=lg_out_i,
lg_pooled=lg_pooled_i,
t5_out=t5_out_i,
clip_l_attn_mask=l_attn_mask_i,
clip_g_attn_mask=g_attn_mask_i,
t5_attn_mask=t5_attn_mask_i,
apply_lg_attn_mask=apply_lg_attn_mask,
apply_t5_attn_mask=apply_t5_attn_mask,
)
else:
# it's fine that attn mask is not None. it's overwritten before calling the model if necessary
info.text_encoder_outputs = (lg_out_i, t5_out_i, lg_pooled_i, l_attn_mask_i, g_attn_mask_i, t5_attn_mask_i)
class Sd3LatentsCachingStrategy(LatentsCachingStrategy):
SD3_LATENTS_NPZ_SUFFIX = "_sd3.npz"
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check)
@property
def cache_suffix(self) -> str:
return Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
return (
os.path.splitext(absolute_path)[0]
+ f"_{image_size[0]:04d}x{image_size[1]:04d}"
+ Sd3LatentsCachingStrategy.SD3_LATENTS_NPZ_SUFFIX
)
def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool):
return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True)
def load_latents_from_disk(
self, npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
return self._default_load_latents_from_disk(8, npz_path, bucket_reso) # support multi-resolution
# TODO remove circular dependency for ImageInfo
def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu")
vae_device = vae.device
vae_dtype = vae.dtype
self._default_cache_batch_latents(
encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True
)
if not train_util.HIGH_VRAM:
train_util.clean_memory_on_device(vae.device)