Spaces:
Running
on
Zero
Running
on
Zero
# cond_imageをU-Netのforwardで渡すバージョンのControlNet-LLLite検証用実装 | |
# ControlNet-LLLite implementation for verification with cond_image passed in U-Net's forward | |
import os | |
import re | |
from typing import Optional, List, Type | |
import torch | |
from library import sdxl_original_unet | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
# input_blocksに適用するかどうか / if True, input_blocks are not applied | |
SKIP_INPUT_BLOCKS = False | |
# output_blocksに適用するかどうか / if True, output_blocks are not applied | |
SKIP_OUTPUT_BLOCKS = True | |
# conv2dに適用するかどうか / if True, conv2d are not applied | |
SKIP_CONV2D = False | |
# transformer_blocksのみに適用するかどうか。Trueの場合、ResBlockには適用されない | |
# if True, only transformer_blocks are applied, and ResBlocks are not applied | |
TRANSFORMER_ONLY = True # if True, SKIP_CONV2D is ignored because conv2d is not used in transformer_blocks | |
# Trueならattn1とattn2にのみ適用し、ffなどには適用しない / if True, apply only to attn1 and attn2, not to ff etc. | |
ATTN1_2_ONLY = True | |
# Trueならattn1のQKV、attn2のQにのみ適用する、ATTN1_2_ONLY指定時のみ有効 / if True, apply only to attn1 QKV and attn2 Q, only valid when ATTN1_2_ONLY is specified | |
ATTN_QKV_ONLY = True | |
# Trueならattn1やffなどにのみ適用し、attn2などには適用しない / if True, apply only to attn1 and ff, not to attn2 | |
# ATTN1_2_ONLYと同時にTrueにできない / cannot be True at the same time as ATTN1_2_ONLY | |
ATTN1_ETC_ONLY = False # True | |
# transformer_blocksの最大インデックス。Noneなら全てのtransformer_blocksに適用 | |
# max index of transformer_blocks. if None, apply to all transformer_blocks | |
TRANSFORMER_MAX_BLOCK_INDEX = None | |
ORIGINAL_LINEAR = torch.nn.Linear | |
ORIGINAL_CONV2D = torch.nn.Conv2d | |
def add_lllite_modules(module: torch.nn.Module, in_dim: int, depth, cond_emb_dim, mlp_dim) -> None: | |
# conditioning1はconditioning imageを embedding する。timestepごとに呼ばれない | |
# conditioning1 embeds conditioning image. it is not called for each timestep | |
modules = [] | |
modules.append(ORIGINAL_CONV2D(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size | |
if depth == 1: | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
elif depth == 2: | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0)) | |
elif depth == 3: | |
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4 | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) | |
modules.append(torch.nn.ReLU(inplace=True)) | |
modules.append(ORIGINAL_CONV2D(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) | |
module.lllite_conditioning1 = torch.nn.Sequential(*modules) | |
# downで入力の次元数を削減する。LoRAにヒントを得ていることにする | |
# midでconditioning image embeddingと入力を結合する | |
# upで元の次元数に戻す | |
# これらはtimestepごとに呼ばれる | |
# reduce the number of input dimensions with down. inspired by LoRA | |
# combine conditioning image embedding and input with mid | |
# restore to the original dimension with up | |
# these are called for each timestep | |
module.lllite_down = torch.nn.Sequential( | |
ORIGINAL_LINEAR(in_dim, mlp_dim), | |
torch.nn.ReLU(inplace=True), | |
) | |
module.lllite_mid = torch.nn.Sequential( | |
ORIGINAL_LINEAR(mlp_dim + cond_emb_dim, mlp_dim), | |
torch.nn.ReLU(inplace=True), | |
) | |
module.lllite_up = torch.nn.Sequential( | |
ORIGINAL_LINEAR(mlp_dim, in_dim), | |
) | |
# Zero-Convにする / set to Zero-Conv | |
torch.nn.init.zeros_(module.lllite_up[0].weight) # zero conv | |
class LLLiteLinear(ORIGINAL_LINEAR): | |
def __init__(self, in_features: int, out_features: int, **kwargs): | |
super().__init__(in_features, out_features, **kwargs) | |
self.enabled = False | |
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0): | |
self.enabled = True | |
self.lllite_name = name | |
self.cond_emb_dim = cond_emb_dim | |
self.dropout = dropout | |
self.multiplier = multiplier # ignored | |
in_dim = self.in_features | |
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim) | |
self.cond_image = None | |
def set_cond_image(self, cond_image): | |
self.cond_image = cond_image | |
def forward(self, x): | |
if not self.enabled: | |
return super().forward(x) | |
cx = self.lllite_conditioning1(self.cond_image) # make forward and backward compatible | |
# reshape / b,c,h,w -> b,h*w,c | |
n, c, h, w = cx.shape | |
cx = cx.view(n, c, h * w).permute(0, 2, 1) | |
cx = torch.cat([cx, self.lllite_down(x)], dim=2) | |
cx = self.lllite_mid(cx) | |
if self.dropout is not None and self.training: | |
cx = torch.nn.functional.dropout(cx, p=self.dropout) | |
cx = self.lllite_up(cx) * self.multiplier | |
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here | |
return x | |
class LLLiteConv2d(ORIGINAL_CONV2D): | |
def __init__(self, in_channels: int, out_channels: int, kernel_size, **kwargs): | |
super().__init__(in_channels, out_channels, kernel_size, **kwargs) | |
self.enabled = False | |
def set_lllite(self, depth, cond_emb_dim, name, mlp_dim, dropout=None, multiplier=1.0): | |
self.enabled = True | |
self.lllite_name = name | |
self.cond_emb_dim = cond_emb_dim | |
self.dropout = dropout | |
self.multiplier = multiplier # ignored | |
in_dim = self.in_channels | |
add_lllite_modules(self, in_dim, depth, cond_emb_dim, mlp_dim) | |
self.cond_image = None | |
self.cond_emb = None | |
def set_cond_image(self, cond_image): | |
self.cond_image = cond_image | |
self.cond_emb = None | |
def forward(self, x): # , cond_image=None): | |
if not self.enabled: | |
return super().forward(x) | |
cx = self.lllite_conditioning1(self.cond_image) | |
cx = torch.cat([cx, self.down(x)], dim=1) | |
cx = self.mid(cx) | |
if self.dropout is not None and self.training: | |
cx = torch.nn.functional.dropout(cx, p=self.dropout) | |
cx = self.up(cx) * self.multiplier | |
x = super().forward(x + cx) # ここで元のモジュールを呼び出す / call the original module here | |
return x | |
class SdxlUNet2DConditionModelControlNetLLLite(sdxl_original_unet.SdxlUNet2DConditionModel): | |
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] | |
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] | |
LLLITE_PREFIX = "lllite_unet" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def apply_lllite( | |
self, | |
cond_emb_dim: int = 16, | |
mlp_dim: int = 16, | |
dropout: Optional[float] = None, | |
varbose: Optional[bool] = False, | |
multiplier: Optional[float] = 1.0, | |
) -> None: | |
def apply_to_modules( | |
root_module: torch.nn.Module, | |
target_replace_modules: List[torch.nn.Module], | |
) -> List[torch.nn.Module]: | |
prefix = "lllite_unet" | |
modules = [] | |
for name, module in root_module.named_modules(): | |
if module.__class__.__name__ in target_replace_modules: | |
for child_name, child_module in module.named_modules(): | |
is_linear = child_module.__class__.__name__ == "LLLiteLinear" | |
is_conv2d = child_module.__class__.__name__ == "LLLiteConv2d" | |
if is_linear or (is_conv2d and not SKIP_CONV2D): | |
# block indexからdepthを計算: depthはconditioningのサイズやチャネルを計算するのに使う | |
# block index to depth: depth is using to calculate conditioning size and channels | |
block_name, index1, index2 = (name + "." + child_name).split(".")[:3] | |
index1 = int(index1) | |
if block_name == "input_blocks": | |
if SKIP_INPUT_BLOCKS: | |
continue | |
depth = 1 if index1 <= 2 else (2 if index1 <= 5 else 3) | |
elif block_name == "middle_block": | |
depth = 3 | |
elif block_name == "output_blocks": | |
if SKIP_OUTPUT_BLOCKS: | |
continue | |
depth = 3 if index1 <= 2 else (2 if index1 <= 5 else 1) | |
if int(index2) >= 2: | |
depth -= 1 | |
else: | |
raise NotImplementedError() | |
lllite_name = prefix + "." + name + "." + child_name | |
lllite_name = lllite_name.replace(".", "_") | |
if TRANSFORMER_MAX_BLOCK_INDEX is not None: | |
p = lllite_name.find("transformer_blocks") | |
if p >= 0: | |
tf_index = int(lllite_name[p:].split("_")[2]) | |
if tf_index > TRANSFORMER_MAX_BLOCK_INDEX: | |
continue | |
# time embは適用外とする | |
# attn2のconditioning (CLIPからの入力) はshapeが違うので適用できない | |
# time emb is not applied | |
# attn2 conditioning (input from CLIP) cannot be applied because the shape is different | |
if "emb_layers" in lllite_name or ( | |
"attn2" in lllite_name and ("to_k" in lllite_name or "to_v" in lllite_name) | |
): | |
continue | |
if ATTN1_2_ONLY: | |
if not ("attn1" in lllite_name or "attn2" in lllite_name): | |
continue | |
if ATTN_QKV_ONLY: | |
if "to_out" in lllite_name: | |
continue | |
if ATTN1_ETC_ONLY: | |
if "proj_out" in lllite_name: | |
pass | |
elif "attn1" in lllite_name and ( | |
"to_k" in lllite_name or "to_v" in lllite_name or "to_out" in lllite_name | |
): | |
pass | |
elif "ff_net_2" in lllite_name: | |
pass | |
else: | |
continue | |
child_module.set_lllite(depth, cond_emb_dim, lllite_name, mlp_dim, dropout, multiplier) | |
modules.append(child_module) | |
return modules | |
target_modules = SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE | |
if not TRANSFORMER_ONLY: | |
target_modules = target_modules + SdxlUNet2DConditionModelControlNetLLLite.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
# create module instances | |
self.lllite_modules = apply_to_modules(self, target_modules) | |
logger.info(f"enable ControlNet LLLite for U-Net: {len(self.lllite_modules)} modules.") | |
# def prepare_optimizer_params(self): | |
def prepare_params(self): | |
train_params = [] | |
non_train_params = [] | |
for name, p in self.named_parameters(): | |
if "lllite" in name: | |
train_params.append(p) | |
else: | |
non_train_params.append(p) | |
logger.info(f"count of trainable parameters: {len(train_params)}") | |
logger.info(f"count of non-trainable parameters: {len(non_train_params)}") | |
for p in non_train_params: | |
p.requires_grad_(False) | |
# without this, an error occurs in the optimizer | |
# RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn | |
non_train_params[0].requires_grad_(True) | |
for p in train_params: | |
p.requires_grad_(True) | |
return train_params | |
# def prepare_grad_etc(self): | |
# self.requires_grad_(True) | |
# def on_epoch_start(self): | |
# self.train() | |
def get_trainable_params(self): | |
return [p[1] for p in self.named_parameters() if "lllite" in p[0]] | |
def save_lllite_weights(self, file, dtype, metadata): | |
if metadata is not None and len(metadata) == 0: | |
metadata = None | |
org_state_dict = self.state_dict() | |
# copy LLLite keys from org_state_dict to state_dict with key conversion | |
state_dict = {} | |
for key in org_state_dict.keys(): | |
# split with ".lllite" | |
pos = key.find(".lllite") | |
if pos < 0: | |
continue | |
lllite_key = SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "." + key[:pos] | |
lllite_key = lllite_key.replace(".", "_") + key[pos:] | |
lllite_key = lllite_key.replace(".lllite_", ".") | |
state_dict[lllite_key] = org_state_dict[key] | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
v = state_dict[key] | |
v = v.detach().clone().to("cpu").to(dtype) | |
state_dict[key] = v | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import save_file | |
save_file(state_dict, file, metadata) | |
else: | |
torch.save(state_dict, file) | |
def load_lllite_weights(self, file, non_lllite_unet_sd=None): | |
r""" | |
LLLiteの重みを読み込まない(initされた値を使う)場合はfileにNoneを指定する。 | |
この場合、non_lllite_unet_sdにはU-Netのstate_dictを指定する。 | |
If you do not want to load LLLite weights (use initialized values), specify None for file. | |
In this case, specify the state_dict of U-Net for non_lllite_unet_sd. | |
""" | |
if not file: | |
state_dict = self.state_dict() | |
for key in non_lllite_unet_sd: | |
if key in state_dict: | |
state_dict[key] = non_lllite_unet_sd[key] | |
info = self.load_state_dict(state_dict, False) | |
return info | |
if os.path.splitext(file)[1] == ".safetensors": | |
from safetensors.torch import load_file | |
weights_sd = load_file(file) | |
else: | |
weights_sd = torch.load(file, map_location="cpu") | |
# module_name = module_name.replace("_block", "@blocks") | |
# module_name = module_name.replace("_layer", "@layer") | |
# module_name = module_name.replace("to_", "to@") | |
# module_name = module_name.replace("time_embed", "time@embed") | |
# module_name = module_name.replace("label_emb", "label@emb") | |
# module_name = module_name.replace("skip_connection", "skip@connection") | |
# module_name = module_name.replace("proj_in", "proj@in") | |
# module_name = module_name.replace("proj_out", "proj@out") | |
pattern = re.compile(r"(_block|_layer|to_|time_embed|label_emb|skip_connection|proj_in|proj_out)") | |
# convert to lllite with U-Net state dict | |
state_dict = non_lllite_unet_sd.copy() if non_lllite_unet_sd is not None else {} | |
for key in weights_sd.keys(): | |
# split with "." | |
pos = key.find(".") | |
if pos < 0: | |
continue | |
module_name = key[:pos] | |
weight_name = key[pos + 1 :] # exclude "." | |
module_name = module_name.replace(SdxlUNet2DConditionModelControlNetLLLite.LLLITE_PREFIX + "_", "") | |
# これはうまくいかない。逆変換を考えなかった設計が悪い / this does not work well. bad design because I didn't think about inverse conversion | |
# module_name = module_name.replace("_", ".") | |
# ださいけどSDXLのU-Netの "_" を "@" に変換する / ugly but convert "_" of SDXL U-Net to "@" | |
matches = pattern.findall(module_name) | |
if matches is not None: | |
for m in matches: | |
logger.info(f"{module_name} {m}") | |
module_name = module_name.replace(m, m.replace("_", "@")) | |
module_name = module_name.replace("_", ".") | |
module_name = module_name.replace("@", "_") | |
lllite_key = module_name + ".lllite_" + weight_name | |
state_dict[lllite_key] = weights_sd[key] | |
info = self.load_state_dict(state_dict, False) | |
return info | |
def forward(self, x, timesteps=None, context=None, y=None, cond_image=None, **kwargs): | |
for m in self.lllite_modules: | |
m.set_cond_image(cond_image) | |
return super().forward(x, timesteps, context, y, **kwargs) | |
def replace_unet_linear_and_conv2d(): | |
logger.info("replace torch.nn.Linear and torch.nn.Conv2d to LLLiteLinear and LLLiteConv2d in U-Net") | |
sdxl_original_unet.torch.nn.Linear = LLLiteLinear | |
sdxl_original_unet.torch.nn.Conv2d = LLLiteConv2d | |
if __name__ == "__main__": | |
# デバッグ用 / for debug | |
# sdxl_original_unet.USE_REENTRANT = False | |
replace_unet_linear_and_conv2d() | |
# test shape etc | |
logger.info("create unet") | |
unet = SdxlUNet2DConditionModelControlNetLLLite() | |
logger.info("enable ControlNet-LLLite") | |
unet.apply_lllite(32, 64, None, False, 1.0) | |
unet.to("cuda") # .to(torch.float16) | |
# from safetensors.torch import load_file | |
# model_sd = load_file(r"E:\Work\SD\Models\sdxl\sd_xl_base_1.0_0.9vae.safetensors") | |
# unet_sd = {} | |
# # copy U-Net keys from unet_state_dict to state_dict | |
# prefix = "model.diffusion_model." | |
# for key in model_sd.keys(): | |
# if key.startswith(prefix): | |
# converted_key = key[len(prefix) :] | |
# unet_sd[converted_key] = model_sd[key] | |
# info = unet.load_lllite_weights("r:/lllite_from_unet.safetensors", unet_sd) | |
# logger.info(info) | |
# logger.info(unet) | |
# logger.info number of parameters | |
params = unet.prepare_params() | |
logger.info(f"number of parameters {sum(p.numel() for p in params)}") | |
# logger.info("type any key to continue") | |
# input() | |
unet.set_use_memory_efficient_attention(True, False) | |
unet.set_gradient_checkpointing(True) | |
unet.train() # for gradient checkpointing | |
# # visualize | |
# import torchviz | |
# logger.info("run visualize") | |
# controlnet.set_control(conditioning_image) | |
# output = unet(x, t, ctx, y) | |
# logger.info("make_dot") | |
# image = torchviz.make_dot(output, params=dict(controlnet.named_parameters())) | |
# logger.info("render") | |
# image.format = "svg" # "png" | |
# image.render("NeuralNet") # すごく時間がかかるので注意 / be careful because it takes a long time | |
# input() | |
import bitsandbytes | |
optimizer = bitsandbytes.adam.Adam8bit(params, 1e-3) | |
scaler = torch.cuda.amp.GradScaler(enabled=True) | |
logger.info("start training") | |
steps = 10 | |
batch_size = 1 | |
sample_param = [p for p in unet.named_parameters() if ".lllite_up." in p[0]][0] | |
for step in range(steps): | |
logger.info(f"step {step}") | |
conditioning_image = torch.rand(batch_size, 3, 1024, 1024).cuda() * 2.0 - 1.0 | |
x = torch.randn(batch_size, 4, 128, 128).cuda() | |
t = torch.randint(low=0, high=10, size=(batch_size,)).cuda() | |
ctx = torch.randn(batch_size, 77, 2048).cuda() | |
y = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda() | |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16): | |
output = unet(x, t, ctx, y, conditioning_image) | |
target = torch.randn_like(output) | |
loss = torch.nn.functional.mse_loss(output, target) | |
scaler.scale(loss).backward() | |
scaler.step(optimizer) | |
scaler.update() | |
optimizer.zero_grad(set_to_none=True) | |
logger.info(sample_param) | |
# from safetensors.torch import save_file | |
# logger.info("save weights") | |
# unet.save_lllite_weights("r:/lllite_from_unet.safetensors", torch.float16, None) | |