Spaces:
Running
on
Zero
Running
on
Zero
# convert key mapping and data format from some LoRA format to another | |
""" | |
Original LoRA format: Based on Black Forest Labs, QKV and MLP are unified into one module | |
alpha is scalar for each LoRA module | |
0 to 18 | |
lora_unet_double_blocks_0_img_attn_proj.alpha torch.Size([]) | |
lora_unet_double_blocks_0_img_attn_proj.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_img_attn_proj.lora_up.weight torch.Size([3072, 4]) | |
lora_unet_double_blocks_0_img_attn_qkv.alpha torch.Size([]) | |
lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight torch.Size([9216, 4]) | |
lora_unet_double_blocks_0_img_mlp_0.alpha torch.Size([]) | |
lora_unet_double_blocks_0_img_mlp_0.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_img_mlp_0.lora_up.weight torch.Size([12288, 4]) | |
lora_unet_double_blocks_0_img_mlp_2.alpha torch.Size([]) | |
lora_unet_double_blocks_0_img_mlp_2.lora_down.weight torch.Size([4, 12288]) | |
lora_unet_double_blocks_0_img_mlp_2.lora_up.weight torch.Size([3072, 4]) | |
lora_unet_double_blocks_0_img_mod_lin.alpha torch.Size([]) | |
lora_unet_double_blocks_0_img_mod_lin.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_img_mod_lin.lora_up.weight torch.Size([18432, 4]) | |
lora_unet_double_blocks_0_txt_attn_proj.alpha torch.Size([]) | |
lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight torch.Size([3072, 4]) | |
lora_unet_double_blocks_0_txt_attn_qkv.alpha torch.Size([]) | |
lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight torch.Size([9216, 4]) | |
lora_unet_double_blocks_0_txt_mlp_0.alpha torch.Size([]) | |
lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight torch.Size([12288, 4]) | |
lora_unet_double_blocks_0_txt_mlp_2.alpha torch.Size([]) | |
lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight torch.Size([4, 12288]) | |
lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight torch.Size([3072, 4]) | |
lora_unet_double_blocks_0_txt_mod_lin.alpha torch.Size([]) | |
lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight torch.Size([18432, 4]) | |
0 to 37 | |
lora_unet_single_blocks_0_linear1.alpha torch.Size([]) | |
lora_unet_single_blocks_0_linear1.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_single_blocks_0_linear1.lora_up.weight torch.Size([21504, 4]) | |
lora_unet_single_blocks_0_linear2.alpha torch.Size([]) | |
lora_unet_single_blocks_0_linear2.lora_down.weight torch.Size([4, 15360]) | |
lora_unet_single_blocks_0_linear2.lora_up.weight torch.Size([3072, 4]) | |
lora_unet_single_blocks_0_modulation_lin.alpha torch.Size([]) | |
lora_unet_single_blocks_0_modulation_lin.lora_down.weight torch.Size([4, 3072]) | |
lora_unet_single_blocks_0_modulation_lin.lora_up.weight torch.Size([9216, 4]) | |
""" | |
""" | |
ai-toolkit: Based on Diffusers, QKV and MLP are separated into 3 modules. | |
A is down, B is up. No alpha for each LoRA module. | |
0 to 18 | |
transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight torch.Size([12288, 16]) | |
transformer.transformer_blocks.0.ff.net.2.lora_A.weight torch.Size([16, 12288]) | |
transformer.transformer_blocks.0.ff.net.2.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight torch.Size([12288, 16]) | |
transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight torch.Size([16, 12288]) | |
transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight torch.Size([3072, 16]) | |
transformer.transformer_blocks.0.norm1.linear.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.norm1.linear.lora_B.weight torch.Size([18432, 16]) | |
transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight torch.Size([16, 3072]) | |
transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight torch.Size([18432, 16]) | |
0 to 37 | |
transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072]) | |
transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16]) | |
transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072]) | |
transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16]) | |
transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072]) | |
transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16]) | |
transformer.single_transformer_blocks.0.norm.linear.lora_A.weight torch.Size([16, 3072]) | |
transformer.single_transformer_blocks.0.norm.linear.lora_B.weight torch.Size([9216, 16]) | |
transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight torch.Size([16, 3072]) | |
transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight torch.Size([12288, 16]) | |
transformer.single_transformer_blocks.0.proj_out.lora_A.weight torch.Size([16, 15360]) | |
transformer.single_transformer_blocks.0.proj_out.lora_B.weight torch.Size([3072, 16]) | |
""" | |
""" | |
xlabs: Unknown format. | |
0 to 18 | |
double_blocks.0.processor.proj_lora1.down.weight torch.Size([16, 3072]) | |
double_blocks.0.processor.proj_lora1.up.weight torch.Size([3072, 16]) | |
double_blocks.0.processor.proj_lora2.down.weight torch.Size([16, 3072]) | |
double_blocks.0.processor.proj_lora2.up.weight torch.Size([3072, 16]) | |
double_blocks.0.processor.qkv_lora1.down.weight torch.Size([16, 3072]) | |
double_blocks.0.processor.qkv_lora1.up.weight torch.Size([9216, 16]) | |
double_blocks.0.processor.qkv_lora2.down.weight torch.Size([16, 3072]) | |
double_blocks.0.processor.qkv_lora2.up.weight torch.Size([9216, 16]) | |
""" | |
import argparse | |
from safetensors.torch import save_file | |
from safetensors import safe_open | |
import torch | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
def convert_to_sd_scripts(sds_sd, ait_sd, sds_key, ait_key): | |
ait_down_key = ait_key + ".lora_A.weight" | |
if ait_down_key not in ait_sd: | |
return | |
ait_up_key = ait_key + ".lora_B.weight" | |
down_weight = ait_sd.pop(ait_down_key) | |
sds_sd[sds_key + ".lora_down.weight"] = down_weight | |
sds_sd[sds_key + ".lora_up.weight"] = ait_sd.pop(ait_up_key) | |
rank = down_weight.shape[0] | |
sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(rank, dtype=down_weight.dtype, device=down_weight.device) | |
def convert_to_sd_scripts_cat(sds_sd, ait_sd, sds_key, ait_keys): | |
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] | |
if ait_down_keys[0] not in ait_sd: | |
return | |
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] | |
down_weights = [ait_sd.pop(k) for k in ait_down_keys] | |
up_weights = [ait_sd.pop(k) for k in ait_up_keys] | |
# lora_down is concatenated along dim=0, so rank is multiplied by the number of splits | |
rank = down_weights[0].shape[0] | |
num_splits = len(ait_keys) | |
sds_sd[sds_key + ".lora_down.weight"] = torch.cat(down_weights, dim=0) | |
merged_up_weights = torch.zeros( | |
(sum(w.shape[0] for w in up_weights), rank * num_splits), | |
dtype=up_weights[0].dtype, | |
device=up_weights[0].device, | |
) | |
i = 0 | |
for j, up_weight in enumerate(up_weights): | |
merged_up_weights[i : i + up_weight.shape[0], j * rank : (j + 1) * rank] = up_weight | |
i += up_weight.shape[0] | |
sds_sd[sds_key + ".lora_up.weight"] = merged_up_weights | |
# set alpha to new_rank | |
new_rank = rank * num_splits | |
sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(new_rank, dtype=down_weights[0].dtype, device=down_weights[0].device) | |
def convert_ai_toolkit_to_sd_scripts(ait_sd): | |
sds_sd = {} | |
for i in range(19): | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0" | |
) | |
convert_to_sd_scripts_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.to_q", | |
f"transformer.transformer_blocks.{i}.attn.to_k", | |
f"transformer.transformer_blocks.{i}.attn.to_v", | |
], | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out" | |
) | |
convert_to_sd_scripts_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.add_q_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_k_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_v_proj", | |
], | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear" | |
) | |
for i in range(38): | |
convert_to_sd_scripts_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_single_blocks_{i}_linear1", | |
[ | |
f"transformer.single_transformer_blocks.{i}.attn.to_q", | |
f"transformer.single_transformer_blocks.{i}.attn.to_k", | |
f"transformer.single_transformer_blocks.{i}.attn.to_v", | |
f"transformer.single_transformer_blocks.{i}.proj_mlp", | |
], | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out" | |
) | |
convert_to_sd_scripts( | |
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear" | |
) | |
if len(ait_sd) > 0: | |
logger.warning(f"Unsuppored keys for sd-scripts: {ait_sd.keys()}") | |
return sds_sd | |
def convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key): | |
if sds_key + ".lora_down.weight" not in sds_sd: | |
return | |
down_weight = sds_sd.pop(sds_key + ".lora_down.weight") | |
# scale weight by alpha and dim | |
rank = down_weight.shape[0] | |
alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar | |
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here | |
# print(f"rank: {rank}, alpha: {alpha}, scale: {scale}") | |
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2 | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
# print(f"scale: {scale}, scale_down: {scale_down}, scale_up: {scale_up}") | |
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down | |
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up | |
def convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None): | |
if sds_key + ".lora_down.weight" not in sds_sd: | |
return | |
down_weight = sds_sd.pop(sds_key + ".lora_down.weight") | |
up_weight = sds_sd.pop(sds_key + ".lora_up.weight") | |
sd_lora_rank = down_weight.shape[0] | |
# scale weight by alpha and dim | |
alpha = sds_sd.pop(sds_key + ".alpha") | |
scale = alpha / sd_lora_rank | |
# calculate scale_down and scale_up | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
down_weight = down_weight * scale_down | |
up_weight = up_weight * scale_up | |
# calculate dims if not provided | |
num_splits = len(ait_keys) | |
if dims is None: | |
dims = [up_weight.shape[0] // num_splits] * num_splits | |
else: | |
assert sum(dims) == up_weight.shape[0] | |
# check upweight is sparse or not | |
is_sparse = False | |
if sd_lora_rank % num_splits == 0: | |
ait_rank = sd_lora_rank // num_splits | |
is_sparse = True | |
i = 0 | |
for j in range(len(dims)): | |
for k in range(len(dims)): | |
if j == k: | |
continue | |
is_sparse = is_sparse and torch.all(up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0) | |
i += dims[j] | |
if is_sparse: | |
logger.info(f"weight is sparse: {sds_key}") | |
# make ai-toolkit weight | |
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] | |
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] | |
if not is_sparse: | |
# down_weight is copied to each split | |
ait_sd.update({k: down_weight for k in ait_down_keys}) | |
# up_weight is split to each split | |
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) | |
else: | |
# down_weight is chunked to each split | |
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) | |
# up_weight is sparse: only non-zero values are copied to each split | |
i = 0 | |
for j in range(len(dims)): | |
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous() | |
i += dims[j] | |
def convert_sd_scripts_to_ai_toolkit(sds_sd): | |
ait_sd = {} | |
for i in range(19): | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0" | |
) | |
convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.to_q", | |
f"transformer.transformer_blocks.{i}.attn.to_k", | |
f"transformer.transformer_blocks.{i}.attn.to_v", | |
], | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out" | |
) | |
convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.add_q_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_k_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_v_proj", | |
], | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear" | |
) | |
for i in range(38): | |
convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_single_blocks_{i}_linear1", | |
[ | |
f"transformer.single_transformer_blocks.{i}.attn.to_q", | |
f"transformer.single_transformer_blocks.{i}.attn.to_k", | |
f"transformer.single_transformer_blocks.{i}.attn.to_v", | |
f"transformer.single_transformer_blocks.{i}.proj_mlp", | |
], | |
dims=[3072, 3072, 3072, 12288], | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out" | |
) | |
convert_to_ai_toolkit( | |
sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear" | |
) | |
if len(sds_sd) > 0: | |
logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}") | |
return ait_sd | |
def main(args): | |
# load source safetensors | |
logger.info(f"Loading source file {args.src_path}") | |
state_dict = {} | |
with safe_open(args.src_path, framework="pt") as f: | |
metadata = f.metadata() | |
for k in f.keys(): | |
state_dict[k] = f.get_tensor(k) | |
logger.info(f"Converting {args.src} to {args.dst} format") | |
if args.src == "ai-toolkit" and args.dst == "sd-scripts": | |
state_dict = convert_ai_toolkit_to_sd_scripts(state_dict) | |
elif args.src == "sd-scripts" and args.dst == "ai-toolkit": | |
state_dict = convert_sd_scripts_to_ai_toolkit(state_dict) | |
# eliminate 'shared tensors' | |
for k in list(state_dict.keys()): | |
state_dict[k] = state_dict[k].detach().clone() | |
else: | |
raise NotImplementedError(f"Conversion from {args.src} to {args.dst} is not supported") | |
# save destination safetensors | |
logger.info(f"Saving destination file {args.dst_path}") | |
save_file(state_dict, args.dst_path, metadata=metadata) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Convert LoRA format") | |
parser.add_argument("--src", type=str, default="ai-toolkit", help="source format, ai-toolkit or sd-scripts") | |
parser.add_argument("--dst", type=str, default="sd-scripts", help="destination format, ai-toolkit or sd-scripts") | |
parser.add_argument("--src_path", type=str, default=None, help="source path") | |
parser.add_argument("--dst_path", type=str, default=None, help="destination path") | |
args = parser.parse_args() | |
main(args) | |