Spaces:
Running
on
Zero
Running
on
Zero
# extract approximating LoRA by svd from two SD models | |
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py | |
# Thanks to cloneofsimo! | |
import argparse | |
import json | |
import os | |
import time | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
from library import sai_model_spec, model_util, sdxl_model_util | |
import lora | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
# CLAMP_QUANTILE = 0.99 | |
# MIN_DIFF = 1e-1 | |
def save_to_file(file_name, model, state_dict, dtype): | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
if type(state_dict[key]) == torch.Tensor: | |
state_dict[key] = state_dict[key].to(dtype) | |
if os.path.splitext(file_name)[1] == ".safetensors": | |
save_file(model, file_name) | |
else: | |
torch.save(model, file_name) | |
def svd( | |
model_org=None, | |
model_tuned=None, | |
save_to=None, | |
dim=4, | |
v2=None, | |
sdxl=None, | |
conv_dim=None, | |
v_parameterization=None, | |
device=None, | |
save_precision=None, | |
clamp_quantile=0.99, | |
min_diff=0.01, | |
no_metadata=False, | |
load_precision=None, | |
load_original_model_to=None, | |
load_tuned_model_to=None, | |
): | |
def str_to_dtype(p): | |
if p == "float": | |
return torch.float | |
if p == "fp16": | |
return torch.float16 | |
if p == "bf16": | |
return torch.bfloat16 | |
return None | |
assert v2 != sdxl or (not v2 and not sdxl), "v2 and sdxl cannot be specified at the same time / v2とsdxlは同時に指定できません" | |
if v_parameterization is None: | |
v_parameterization = v2 | |
load_dtype = str_to_dtype(load_precision) if load_precision else None | |
save_dtype = str_to_dtype(save_precision) | |
work_device = "cpu" | |
# load models | |
if not sdxl: | |
logger.info(f"loading original SD model : {model_org}") | |
text_encoder_o, _, unet_o = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_org) | |
text_encoders_o = [text_encoder_o] | |
if load_dtype is not None: | |
text_encoder_o = text_encoder_o.to(load_dtype) | |
unet_o = unet_o.to(load_dtype) | |
logger.info(f"loading tuned SD model : {model_tuned}") | |
text_encoder_t, _, unet_t = model_util.load_models_from_stable_diffusion_checkpoint(v2, model_tuned) | |
text_encoders_t = [text_encoder_t] | |
if load_dtype is not None: | |
text_encoder_t = text_encoder_t.to(load_dtype) | |
unet_t = unet_t.to(load_dtype) | |
model_version = model_util.get_model_version_str_for_sd1_sd2(v2, v_parameterization) | |
else: | |
device_org = load_original_model_to if load_original_model_to else "cpu" | |
device_tuned = load_tuned_model_to if load_tuned_model_to else "cpu" | |
logger.info(f"loading original SDXL model : {model_org}") | |
text_encoder_o1, text_encoder_o2, _, unet_o, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint( | |
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_org, device_org | |
) | |
text_encoders_o = [text_encoder_o1, text_encoder_o2] | |
if load_dtype is not None: | |
text_encoder_o1 = text_encoder_o1.to(load_dtype) | |
text_encoder_o2 = text_encoder_o2.to(load_dtype) | |
unet_o = unet_o.to(load_dtype) | |
logger.info(f"loading original SDXL model : {model_tuned}") | |
text_encoder_t1, text_encoder_t2, _, unet_t, _, _ = sdxl_model_util.load_models_from_sdxl_checkpoint( | |
sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, model_tuned, device_tuned | |
) | |
text_encoders_t = [text_encoder_t1, text_encoder_t2] | |
if load_dtype is not None: | |
text_encoder_t1 = text_encoder_t1.to(load_dtype) | |
text_encoder_t2 = text_encoder_t2.to(load_dtype) | |
unet_t = unet_t.to(load_dtype) | |
model_version = sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0 | |
# create LoRA network to extract weights: Use dim (rank) as alpha | |
if conv_dim is None: | |
kwargs = {} | |
else: | |
kwargs = {"conv_dim": conv_dim, "conv_alpha": conv_dim} | |
lora_network_o = lora.create_network(1.0, dim, dim, None, text_encoders_o, unet_o, **kwargs) | |
lora_network_t = lora.create_network(1.0, dim, dim, None, text_encoders_t, unet_t, **kwargs) | |
assert len(lora_network_o.text_encoder_loras) == len( | |
lora_network_t.text_encoder_loras | |
), f"model version is different (SD1.x vs SD2.x) / それぞれのモデルのバージョンが違います(SD1.xベースとSD2.xベース) " | |
# get diffs | |
diffs = {} | |
text_encoder_different = False | |
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.text_encoder_loras, lora_network_t.text_encoder_loras)): | |
lora_name = lora_o.lora_name | |
module_o = lora_o.org_module | |
module_t = lora_t.org_module | |
diff = module_t.weight.to(work_device) - module_o.weight.to(work_device) | |
# clear weight to save memory | |
module_o.weight = None | |
module_t.weight = None | |
# Text Encoder might be same | |
if not text_encoder_different and torch.max(torch.abs(diff)) > min_diff: | |
text_encoder_different = True | |
logger.info(f"Text encoder is different. {torch.max(torch.abs(diff))} > {min_diff}") | |
diffs[lora_name] = diff | |
# clear target Text Encoder to save memory | |
for text_encoder in text_encoders_t: | |
del text_encoder | |
if not text_encoder_different: | |
logger.warning("Text encoder is same. Extract U-Net only.") | |
lora_network_o.text_encoder_loras = [] | |
diffs = {} # clear diffs | |
for i, (lora_o, lora_t) in enumerate(zip(lora_network_o.unet_loras, lora_network_t.unet_loras)): | |
lora_name = lora_o.lora_name | |
module_o = lora_o.org_module | |
module_t = lora_t.org_module | |
diff = module_t.weight.to(work_device) - module_o.weight.to(work_device) | |
# clear weight to save memory | |
module_o.weight = None | |
module_t.weight = None | |
diffs[lora_name] = diff | |
# clear LoRA network, target U-Net to save memory | |
del lora_network_o | |
del lora_network_t | |
del unet_t | |
# make LoRA with svd | |
logger.info("calculating by svd") | |
lora_weights = {} | |
with torch.no_grad(): | |
for lora_name, mat in tqdm(list(diffs.items())): | |
if args.device: | |
mat = mat.to(args.device) | |
mat = mat.to(torch.float) # calc by float | |
# if conv_dim is None, diffs do not include LoRAs for conv2d-3x3 | |
conv2d = len(mat.size()) == 4 | |
kernel_size = None if not conv2d else mat.size()[2:4] | |
conv2d_3x3 = conv2d and kernel_size != (1, 1) | |
rank = dim if not conv2d_3x3 or conv_dim is None else conv_dim | |
out_dim, in_dim = mat.size()[0:2] | |
if device: | |
mat = mat.to(device) | |
# logger.info(lora_name, mat.size(), mat.device, rank, in_dim, out_dim) | |
rank = min(rank, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
if conv2d: | |
if conv2d_3x3: | |
mat = mat.flatten(start_dim=1) | |
else: | |
mat = mat.squeeze() | |
U, S, Vh = torch.linalg.svd(mat) | |
U = U[:, :rank] | |
S = S[:rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, clamp_quantile) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
if conv2d: | |
U = U.reshape(out_dim, rank, 1, 1) | |
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) | |
U = U.to(work_device, dtype=save_dtype).contiguous() | |
Vh = Vh.to(work_device, dtype=save_dtype).contiguous() | |
lora_weights[lora_name] = (U, Vh) | |
# make state dict for LoRA | |
lora_sd = {} | |
for lora_name, (up_weight, down_weight) in lora_weights.items(): | |
lora_sd[lora_name + ".lora_up.weight"] = up_weight | |
lora_sd[lora_name + ".lora_down.weight"] = down_weight | |
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0]) | |
# load state dict to LoRA and save it | |
lora_network_save, lora_sd = lora.create_network_from_weights(1.0, None, None, text_encoders_o, unet_o, weights_sd=lora_sd) | |
lora_network_save.apply_to(text_encoders_o, unet_o) # create internal module references for state_dict | |
info = lora_network_save.load_state_dict(lora_sd) | |
logger.info(f"Loading extracted LoRA weights: {info}") | |
dir_name = os.path.dirname(save_to) | |
if dir_name and not os.path.exists(dir_name): | |
os.makedirs(dir_name, exist_ok=True) | |
# minimum metadata | |
net_kwargs = {} | |
if conv_dim is not None: | |
net_kwargs["conv_dim"] = str(conv_dim) | |
net_kwargs["conv_alpha"] = str(float(conv_dim)) | |
metadata = { | |
"ss_v2": str(v2), | |
"ss_base_model_version": model_version, | |
"ss_network_module": "networks.lora", | |
"ss_network_dim": str(dim), | |
"ss_network_alpha": str(float(dim)), | |
"ss_network_args": json.dumps(net_kwargs), | |
} | |
if not no_metadata: | |
title = os.path.splitext(os.path.basename(save_to))[0] | |
sai_metadata = sai_model_spec.build_metadata(None, v2, v_parameterization, sdxl, True, False, time.time(), title=title) | |
metadata.update(sai_metadata) | |
lora_network_save.save_weights(save_to, save_dtype, metadata) | |
logger.info(f"LoRA weights are saved to: {save_to}") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.x model / Stable Diffusion 2.xのモデルを読み込む") | |
parser.add_argument( | |
"--v_parameterization", | |
action="store_true", | |
default=None, | |
help="make LoRA metadata for v-parameterization (default is same to v2) / 作成するLoRAのメタデータにv-parameterization用と設定する(省略時はv2と同じ)", | |
) | |
parser.add_argument( | |
"--sdxl", action="store_true", help="load Stable Diffusion SDXL base model / Stable Diffusion SDXL baseのモデルを読み込む" | |
) | |
parser.add_argument( | |
"--load_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in loading, model default if omitted / 読み込み時に精度を変更して読み込む、省略時はモデルファイルによる" | |
) | |
parser.add_argument( | |
"--save_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat", | |
) | |
parser.add_argument( | |
"--model_org", | |
type=str, | |
default=None, | |
required=True, | |
help="Stable Diffusion original model: ckpt or safetensors file / 元モデル、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--model_tuned", | |
type=str, | |
default=None, | |
required=True, | |
help="Stable Diffusion tuned model, LoRA is difference of `original to tuned`: ckpt or safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--save_to", | |
type=str, | |
default=None, | |
required=True, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", | |
) | |
parser.add_argument("--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)") | |
parser.add_argument( | |
"--conv_dim", | |
type=int, | |
default=None, | |
help="dimension (rank) of LoRA for Conv2d-3x3 (default None, disabled) / LoRAのConv2d-3x3の次元数(rank)(デフォルトNone、適用なし)", | |
) | |
parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") | |
parser.add_argument( | |
"--clamp_quantile", | |
type=float, | |
default=0.99, | |
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99", | |
) | |
parser.add_argument( | |
"--min_diff", | |
type=float, | |
default=0.01, | |
help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /" | |
+ "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01", | |
) | |
parser.add_argument( | |
"--no_metadata", | |
action="store_true", | |
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
) | |
parser.add_argument( | |
"--load_original_model_to", | |
type=str, | |
default=None, | |
help="location to load original model, cpu or cuda, cuda:0, etc, default is cpu, only for SDXL / 元モデル読み込み先、cpuまたはcuda、cuda:0など、省略時はcpu、SDXLのみ有効", | |
) | |
parser.add_argument( | |
"--load_tuned_model_to", | |
type=str, | |
default=None, | |
help="location to load tuned model, cpu or cuda, cuda:0, etc, default is cpu, only for SDXL / 派生モデル読み込み先、cpuまたはcuda、cuda:0など、省略時はcpu、SDXLのみ有効", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
svd(**vars(args)) | |