Spaces:
Running
on
Zero
Running
on
Zero
# extract approximating LoRA by svd from two FLUX models | |
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py | |
# Thanks to cloneofsimo! | |
import argparse | |
import json | |
import os | |
import time | |
import torch | |
from safetensors.torch import load_file, save_file | |
from safetensors import safe_open | |
from tqdm import tqdm | |
from library import flux_utils, sai_model_spec, model_util, sdxl_model_util | |
import lora | |
from library.utils import MemoryEfficientSafeOpen | |
from library.utils import setup_logging | |
from networks import lora_flux | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
# CLAMP_QUANTILE = 0.99 | |
# MIN_DIFF = 1e-1 | |
def save_to_file(file_name, state_dict, metadata, dtype): | |
if dtype is not None: | |
for key in list(state_dict.keys()): | |
if type(state_dict[key]) == torch.Tensor: | |
state_dict[key] = state_dict[key].to(dtype) | |
save_file(state_dict, file_name, metadata=metadata) | |
def svd( | |
model_org=None, | |
model_tuned=None, | |
save_to=None, | |
dim=4, | |
device=None, | |
save_precision=None, | |
clamp_quantile=0.99, | |
min_diff=0.01, | |
no_metadata=False, | |
mem_eff_safe_open=False, | |
): | |
def str_to_dtype(p): | |
if p == "float": | |
return torch.float | |
if p == "fp16": | |
return torch.float16 | |
if p == "bf16": | |
return torch.bfloat16 | |
return None | |
calc_dtype = torch.float | |
save_dtype = str_to_dtype(save_precision) | |
store_device = "cpu" | |
# open models | |
lora_weights = {} | |
if not mem_eff_safe_open: | |
# use original safetensors.safe_open | |
open_fn = lambda fn: safe_open(fn, framework="pt") | |
else: | |
logger.info("Using memory efficient safe_open") | |
open_fn = lambda fn: MemoryEfficientSafeOpen(fn) | |
with open_fn(model_org) as f_org: | |
# filter keys | |
keys = [] | |
for key in f_org.keys(): | |
if not ("single_block" in key or "double_block" in key): | |
continue | |
if ".bias" in key: | |
continue | |
if "norm" in key: | |
continue | |
keys.append(key) | |
with open_fn(model_tuned) as f_tuned: | |
for key in tqdm(keys): | |
# get tensors and calculate difference | |
value_o = f_org.get_tensor(key) | |
value_t = f_tuned.get_tensor(key) | |
mat = value_t.to(calc_dtype) - value_o.to(calc_dtype) | |
del value_o, value_t | |
# extract LoRA weights | |
if device: | |
mat = mat.to(device) | |
out_dim, in_dim = mat.size()[0:2] | |
rank = min(dim, in_dim, out_dim) # LoRA rank cannot exceed the original dim | |
mat = mat.squeeze() | |
U, S, Vh = torch.linalg.svd(mat) | |
U = U[:, :rank] | |
S = S[:rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, clamp_quantile) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
U = U.to(store_device, dtype=save_dtype).contiguous() | |
Vh = Vh.to(store_device, dtype=save_dtype).contiguous() | |
# print(f"key: {key}, U: {U.size()}, Vh: {Vh.size()}") | |
lora_weights[key] = (U, Vh) | |
del mat, U, S, Vh | |
# make state dict for LoRA | |
lora_sd = {} | |
for key, (up_weight, down_weight) in lora_weights.items(): | |
lora_name = key.replace(".weight", "").replace(".", "_") | |
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_FLUX + "_" + lora_name | |
lora_sd[lora_name + ".lora_up.weight"] = up_weight | |
lora_sd[lora_name + ".lora_down.weight"] = down_weight | |
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0]) # same as rank | |
# minimum metadata | |
net_kwargs = {} | |
metadata = { | |
"ss_v2": str(False), | |
"ss_base_model_version": flux_utils.MODEL_VERSION_FLUX_V1, | |
"ss_network_module": "networks.lora_flux", | |
"ss_network_dim": str(dim), | |
"ss_network_alpha": str(float(dim)), | |
"ss_network_args": json.dumps(net_kwargs), | |
} | |
if not no_metadata: | |
title = os.path.splitext(os.path.basename(save_to))[0] | |
sai_metadata = sai_model_spec.build_metadata(lora_sd, False, False, False, True, False, time.time(), title, flux="dev") | |
metadata.update(sai_metadata) | |
save_to_file(save_to, lora_sd, metadata, save_dtype) | |
logger.info(f"LoRA weights saved to {save_to}") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat", | |
) | |
parser.add_argument( | |
"--model_org", | |
type=str, | |
default=None, | |
required=True, | |
help="Original model: safetensors file / 元モデル、safetensors", | |
) | |
parser.add_argument( | |
"--model_tuned", | |
type=str, | |
default=None, | |
required=True, | |
help="Tuned model, LoRA is difference of `original to tuned`: safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--mem_eff_safe_open", | |
action="store_true", | |
help="use memory efficient safe_open. This is an experimental feature, use only when memory is not enough." | |
" / メモリ効率の良いsafe_openを使用する。実装は実験的なものなので、メモリが足りない場合のみ使用してください。", | |
) | |
parser.add_argument( | |
"--save_to", | |
type=str, | |
default=None, | |
required=True, | |
help="destination file name: safetensors file / 保存先のファイル名、safetensors", | |
) | |
parser.add_argument( | |
"--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)" | |
) | |
parser.add_argument( | |
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う" | |
) | |
parser.add_argument( | |
"--clamp_quantile", | |
type=float, | |
default=0.99, | |
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99", | |
) | |
# parser.add_argument( | |
# "--min_diff", | |
# type=float, | |
# default=0.01, | |
# help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /" | |
# + "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01", | |
# ) | |
parser.add_argument( | |
"--no_metadata", | |
action="store_true", | |
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
svd(**vars(args)) | |