MakeAnything / networks /flux_extract_lora.py
yiren98's picture
Upload 98 files
abd09b6 verified
# extract approximating LoRA by svd from two FLUX models
# The code is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo!
import argparse
import json
import os
import time
import torch
from safetensors.torch import load_file, save_file
from safetensors import safe_open
from tqdm import tqdm
from library import flux_utils, sai_model_spec, model_util, sdxl_model_util
import lora
from library.utils import MemoryEfficientSafeOpen
from library.utils import setup_logging
from networks import lora_flux
setup_logging()
import logging
logger = logging.getLogger(__name__)
# CLAMP_QUANTILE = 0.99
# MIN_DIFF = 1e-1
def save_to_file(file_name, state_dict, metadata, dtype):
if dtype is not None:
for key in list(state_dict.keys()):
if type(state_dict[key]) == torch.Tensor:
state_dict[key] = state_dict[key].to(dtype)
save_file(state_dict, file_name, metadata=metadata)
def svd(
model_org=None,
model_tuned=None,
save_to=None,
dim=4,
device=None,
save_precision=None,
clamp_quantile=0.99,
min_diff=0.01,
no_metadata=False,
mem_eff_safe_open=False,
):
def str_to_dtype(p):
if p == "float":
return torch.float
if p == "fp16":
return torch.float16
if p == "bf16":
return torch.bfloat16
return None
calc_dtype = torch.float
save_dtype = str_to_dtype(save_precision)
store_device = "cpu"
# open models
lora_weights = {}
if not mem_eff_safe_open:
# use original safetensors.safe_open
open_fn = lambda fn: safe_open(fn, framework="pt")
else:
logger.info("Using memory efficient safe_open")
open_fn = lambda fn: MemoryEfficientSafeOpen(fn)
with open_fn(model_org) as f_org:
# filter keys
keys = []
for key in f_org.keys():
if not ("single_block" in key or "double_block" in key):
continue
if ".bias" in key:
continue
if "norm" in key:
continue
keys.append(key)
with open_fn(model_tuned) as f_tuned:
for key in tqdm(keys):
# get tensors and calculate difference
value_o = f_org.get_tensor(key)
value_t = f_tuned.get_tensor(key)
mat = value_t.to(calc_dtype) - value_o.to(calc_dtype)
del value_o, value_t
# extract LoRA weights
if device:
mat = mat.to(device)
out_dim, in_dim = mat.size()[0:2]
rank = min(dim, in_dim, out_dim) # LoRA rank cannot exceed the original dim
mat = mat.squeeze()
U, S, Vh = torch.linalg.svd(mat)
U = U[:, :rank]
S = S[:rank]
U = U @ torch.diag(S)
Vh = Vh[:rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, clamp_quantile)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
U = U.to(store_device, dtype=save_dtype).contiguous()
Vh = Vh.to(store_device, dtype=save_dtype).contiguous()
# print(f"key: {key}, U: {U.size()}, Vh: {Vh.size()}")
lora_weights[key] = (U, Vh)
del mat, U, S, Vh
# make state dict for LoRA
lora_sd = {}
for key, (up_weight, down_weight) in lora_weights.items():
lora_name = key.replace(".weight", "").replace(".", "_")
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_FLUX + "_" + lora_name
lora_sd[lora_name + ".lora_up.weight"] = up_weight
lora_sd[lora_name + ".lora_down.weight"] = down_weight
lora_sd[lora_name + ".alpha"] = torch.tensor(down_weight.size()[0]) # same as rank
# minimum metadata
net_kwargs = {}
metadata = {
"ss_v2": str(False),
"ss_base_model_version": flux_utils.MODEL_VERSION_FLUX_V1,
"ss_network_module": "networks.lora_flux",
"ss_network_dim": str(dim),
"ss_network_alpha": str(float(dim)),
"ss_network_args": json.dumps(net_kwargs),
}
if not no_metadata:
title = os.path.splitext(os.path.basename(save_to))[0]
sai_metadata = sai_model_spec.build_metadata(lora_sd, False, False, False, True, False, time.time(), title, flux="dev")
metadata.update(sai_metadata)
save_to_file(save_to, lora_sd, metadata, save_dtype)
logger.info(f"LoRA weights saved to {save_to}")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
choices=[None, "float", "fp16", "bf16"],
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はfloat",
)
parser.add_argument(
"--model_org",
type=str,
default=None,
required=True,
help="Original model: safetensors file / 元モデル、safetensors",
)
parser.add_argument(
"--model_tuned",
type=str,
default=None,
required=True,
help="Tuned model, LoRA is difference of `original to tuned`: safetensors file / 派生モデル(生成されるLoRAは元→派生の差分になります)、ckptまたはsafetensors",
)
parser.add_argument(
"--mem_eff_safe_open",
action="store_true",
help="use memory efficient safe_open. This is an experimental feature, use only when memory is not enough."
" / メモリ効率の良いsafe_openを使用する。実装は実験的なものなので、メモリが足りない場合のみ使用してください。",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
required=True,
help="destination file name: safetensors file / 保存先のファイル名、safetensors",
)
parser.add_argument(
"--dim", type=int, default=4, help="dimension (rank) of LoRA (default 4) / LoRAの次元数(rank)(デフォルト4)"
)
parser.add_argument(
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う"
)
parser.add_argument(
"--clamp_quantile",
type=float,
default=0.99,
help="Quantile clamping value, float, (0-1). Default = 0.99 / 値をクランプするための分位点、float、(0-1)。デフォルトは0.99",
)
# parser.add_argument(
# "--min_diff",
# type=float,
# default=0.01,
# help="Minimum difference between finetuned model and base to consider them different enough to extract, float, (0-1). Default = 0.01 /"
# + "LoRAを抽出するために元モデルと派生モデルの差分の最小値、float、(0-1)。デフォルトは0.01",
# )
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
svd(**vars(args))