MakeAnything / networks /flux_merge_lora.py
yiren98's picture
Upload 98 files
abd09b6 verified
import argparse
import math
import os
import time
from typing import Any, Dict, Union
import torch
from safetensors import safe_open
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library.utils import setup_logging, str_to_dtype, MemoryEfficientSafeOpen, mem_eff_save_file
setup_logging()
import logging
logger = logging.getLogger(__name__)
import lora_flux as lora_flux
from library import sai_model_spec, train_util
def load_state_dict(file_name, dtype):
if os.path.splitext(file_name)[1] == ".safetensors":
sd = load_file(file_name)
metadata = train_util.load_metadata_from_safetensors(file_name)
else:
sd = torch.load(file_name, map_location="cpu")
metadata = {}
for key in list(sd.keys()):
if type(sd[key]) == torch.Tensor:
sd[key] = sd[key].to(dtype)
return sd, metadata
def save_to_file(file_name, state_dict: Dict[str, Union[Any, torch.Tensor]], dtype, metadata, mem_eff_save=False):
if dtype is not None:
logger.info(f"converting to {dtype}...")
for key in tqdm(list(state_dict.keys())):
if type(state_dict[key]) == torch.Tensor and state_dict[key].dtype.is_floating_point:
state_dict[key] = state_dict[key].to(dtype)
logger.info(f"saving to: {file_name}")
if mem_eff_save:
mem_eff_save_file(state_dict, file_name, metadata=metadata)
else:
save_file(state_dict, file_name, metadata=metadata)
def merge_to_flux_model(
loading_device,
working_device,
flux_path: str,
clip_l_path: str,
t5xxl_path: str,
models,
ratios,
merge_dtype,
save_dtype,
mem_eff_load_save=False,
):
# create module map without loading state_dict
lora_name_to_module_key = {}
if flux_path is not None:
logger.info(f"loading keys from FLUX.1 model: {flux_path}")
with safe_open(flux_path, framework="pt", device=loading_device) as flux_file:
keys = list(flux_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_FLUX + "_" + module_name.replace(".", "_")
lora_name_to_module_key[lora_name] = key
lora_name_to_clip_l_key = {}
if clip_l_path is not None:
logger.info(f"loading keys from clip_l model: {clip_l_path}")
with safe_open(clip_l_path, framework="pt", device=loading_device) as clip_l_file:
keys = list(clip_l_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP + "_" + module_name.replace(".", "_")
lora_name_to_clip_l_key[lora_name] = key
lora_name_to_t5xxl_key = {}
if t5xxl_path is not None:
logger.info(f"loading keys from t5xxl model: {t5xxl_path}")
with safe_open(t5xxl_path, framework="pt", device=loading_device) as t5xxl_file:
keys = list(t5xxl_file.keys())
for key in keys:
if key.endswith(".weight"):
module_name = ".".join(key.split(".")[:-1])
lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5 + "_" + module_name.replace(".", "_")
lora_name_to_t5xxl_key[lora_name] = key
flux_state_dict = {}
clip_l_state_dict = {}
t5xxl_state_dict = {}
if mem_eff_load_save:
if flux_path is not None:
with MemoryEfficientSafeOpen(flux_path) as flux_file:
for key in tqdm(flux_file.keys()):
flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed
if clip_l_path is not None:
with MemoryEfficientSafeOpen(clip_l_path) as clip_l_file:
for key in tqdm(clip_l_file.keys()):
clip_l_state_dict[key] = clip_l_file.get_tensor(key).to(loading_device)
if t5xxl_path is not None:
with MemoryEfficientSafeOpen(t5xxl_path) as t5xxl_file:
for key in tqdm(t5xxl_file.keys()):
t5xxl_state_dict[key] = t5xxl_file.get_tensor(key).to(loading_device)
else:
if flux_path is not None:
flux_state_dict = load_file(flux_path, device=loading_device)
if clip_l_path is not None:
clip_l_state_dict = load_file(clip_l_path, device=loading_device)
if t5xxl_path is not None:
t5xxl_state_dict = load_file(t5xxl_path, device=loading_device)
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype) # loading on CPU
logger.info(f"merging...")
for key in tqdm(list(lora_sd.keys())):
if "lora_down" in key:
lora_name = key[: key.rfind(".lora_down")]
up_key = key.replace("lora_down", "lora_up")
alpha_key = key[: key.index("lora_down")] + "alpha"
if lora_name in lora_name_to_module_key:
module_weight_key = lora_name_to_module_key[lora_name]
state_dict = flux_state_dict
elif lora_name in lora_name_to_clip_l_key:
module_weight_key = lora_name_to_clip_l_key[lora_name]
state_dict = clip_l_state_dict
elif lora_name in lora_name_to_t5xxl_key:
module_weight_key = lora_name_to_t5xxl_key[lora_name]
state_dict = t5xxl_state_dict
else:
logger.warning(
f"no module found for LoRA weight: {key}. Skipping..."
f"LoRAの重みに対応するモジュールが見つかりませんでした。スキップします。"
)
continue
down_weight = lora_sd.pop(key)
up_weight = lora_sd.pop(up_key)
dim = down_weight.size()[0]
alpha = lora_sd.pop(alpha_key, dim)
scale = alpha / dim
# W <- W + U * D
weight = state_dict[module_weight_key]
weight = weight.to(working_device, merge_dtype)
up_weight = up_weight.to(working_device, merge_dtype)
down_weight = down_weight.to(working_device, merge_dtype)
# logger.info(module_name, down_weight.size(), up_weight.size())
if len(weight.size()) == 2:
# linear
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# logger.info(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + ratio * conved * scale
state_dict[module_weight_key] = weight.to(loading_device, save_dtype)
del up_weight
del down_weight
del weight
if len(lora_sd) > 0:
logger.warning(f"Unused keys in LoRA model: {list(lora_sd.keys())}")
return flux_state_dict, clip_l_state_dict, t5xxl_state_dict
def merge_to_flux_model_diffusers(
loading_device, working_device, flux_model, models, ratios, merge_dtype, save_dtype, mem_eff_load_save=False
):
logger.info(f"loading keys from FLUX.1 model: {flux_model}")
if mem_eff_load_save:
flux_state_dict = {}
with MemoryEfficientSafeOpen(flux_model) as flux_file:
for key in tqdm(flux_file.keys()):
flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed
else:
flux_state_dict = load_file(flux_model, device=loading_device)
def create_key_map(n_double_layers, n_single_layers):
key_map = {}
for index in range(n_double_layers):
prefix_from = f"transformer_blocks.{index}"
prefix_to = f"double_blocks.{index}"
for end in ("weight", "bias"):
k = f"{prefix_from}.attn."
qkv_img = f"{prefix_to}.img_attn.qkv.{end}"
qkv_txt = f"{prefix_to}.txt_attn.qkv.{end}"
key_map[f"{k}to_q.{end}"] = qkv_img
key_map[f"{k}to_k.{end}"] = qkv_img
key_map[f"{k}to_v.{end}"] = qkv_img
key_map[f"{k}add_q_proj.{end}"] = qkv_txt
key_map[f"{k}add_k_proj.{end}"] = qkv_txt
key_map[f"{k}add_v_proj.{end}"] = qkv_txt
block_map = {
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
}
for k, v in block_map.items():
key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}"
for index in range(n_single_layers):
prefix_from = f"single_transformer_blocks.{index}"
prefix_to = f"single_blocks.{index}"
for end in ("weight", "bias"):
k = f"{prefix_from}.attn."
qkv = f"{prefix_to}.linear1.{end}"
key_map[f"{k}to_q.{end}"] = qkv
key_map[f"{k}to_k.{end}"] = qkv
key_map[f"{k}to_v.{end}"] = qkv
key_map[f"{prefix_from}.proj_mlp.{end}"] = qkv
block_map = {
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
}
for k, v in block_map.items():
key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}"
# add as-is keys
values = list([(v if isinstance(v, str) else v[0]) for v in set(key_map.values())])
values.sort()
key_map.update({v: v for v in values})
return key_map
key_map = create_key_map(18, 38) # 18 double layers, 38 single layers
def find_matching_key(flux_dict, lora_key):
lora_key = lora_key.replace("diffusion_model.", "")
lora_key = lora_key.replace("transformer.", "")
lora_key = lora_key.replace("lora_A", "lora_down").replace("lora_B", "lora_up")
lora_key = lora_key.replace("single_transformer_blocks", "single_blocks")
lora_key = lora_key.replace("transformer_blocks", "double_blocks")
double_block_map = {
"attn.to_out.0": "img_attn.proj",
"norm1.linear": "img_mod.lin",
"norm1_context.linear": "txt_mod.lin",
"attn.to_add_out": "txt_attn.proj",
"ff.net.0.proj": "img_mlp.0",
"ff.net.2": "img_mlp.2",
"ff_context.net.0.proj": "txt_mlp.0",
"ff_context.net.2": "txt_mlp.2",
"attn.norm_q": "img_attn.norm.query_norm",
"attn.norm_k": "img_attn.norm.key_norm",
"attn.norm_added_q": "txt_attn.norm.query_norm",
"attn.norm_added_k": "txt_attn.norm.key_norm",
"attn.to_q": "img_attn.qkv",
"attn.to_k": "img_attn.qkv",
"attn.to_v": "img_attn.qkv",
"attn.add_q_proj": "txt_attn.qkv",
"attn.add_k_proj": "txt_attn.qkv",
"attn.add_v_proj": "txt_attn.qkv",
}
single_block_map = {
"norm.linear": "modulation.lin",
"proj_out": "linear2",
"attn.norm_q": "norm.query_norm",
"attn.norm_k": "norm.key_norm",
"attn.to_q": "linear1",
"attn.to_k": "linear1",
"attn.to_v": "linear1",
"proj_mlp": "linear1",
}
# same key exists in both single_block_map and double_block_map, so we must care about single/double
# print("lora_key before double_block_map", lora_key)
for old, new in double_block_map.items():
if "double" in lora_key:
lora_key = lora_key.replace(old, new)
# print("lora_key before single_block_map", lora_key)
for old, new in single_block_map.items():
if "single" in lora_key:
lora_key = lora_key.replace(old, new)
# print("lora_key after mapping", lora_key)
if lora_key in key_map:
flux_key = key_map[lora_key]
logger.info(f"Found matching key: {flux_key}")
return flux_key
# If not found in key_map, try partial matching
potential_key = lora_key + ".weight"
logger.info(f"Searching for key: {potential_key}")
matches = [k for k in flux_dict.keys() if potential_key in k]
if matches:
logger.info(f"Found matching key: {matches[0]}")
return matches[0]
return None
merged_keys = set()
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, _ = load_state_dict(model, merge_dtype)
logger.info("merging...")
for key in lora_sd.keys():
if "lora_down" in key or "lora_A" in key:
lora_name = key[: key.rfind(".lora_down" if "lora_down" in key else ".lora_A")]
up_key = key.replace("lora_down", "lora_up").replace("lora_A", "lora_B")
alpha_key = key[: key.index("lora_down" if "lora_down" in key else "lora_A")] + "alpha"
logger.info(f"Processing LoRA key: {lora_name}")
flux_key = find_matching_key(flux_state_dict, lora_name)
if flux_key is None:
logger.warning(f"no module found for LoRA weight: {key}")
continue
logger.info(f"Merging LoRA key {lora_name} into Flux key {flux_key}")
down_weight = lora_sd[key]
up_weight = lora_sd[up_key]
dim = down_weight.size()[0]
alpha = lora_sd.get(alpha_key, dim)
scale = alpha / dim
weight = flux_state_dict[flux_key]
weight = weight.to(working_device, merge_dtype)
up_weight = up_weight.to(working_device, merge_dtype)
down_weight = down_weight.to(working_device, merge_dtype)
# print(up_weight.size(), down_weight.size(), weight.size())
if lora_name.startswith("transformer."):
if "qkv" in flux_key or "linear1" in flux_key: # combined qkv or qkv+mlp
update = ratio * (up_weight @ down_weight) * scale
# print(update.shape)
if "img_attn" in flux_key or "txt_attn" in flux_key:
q, k, v = torch.chunk(weight, 3, dim=0)
if "to_q" in lora_name or "add_q_proj" in lora_name:
q += update.reshape(q.shape)
elif "to_k" in lora_name or "add_k_proj" in lora_name:
k += update.reshape(k.shape)
elif "to_v" in lora_name or "add_v_proj" in lora_name:
v += update.reshape(v.shape)
weight = torch.cat([q, k, v], dim=0)
elif "linear1" in flux_key:
q, k, v = torch.chunk(weight[: int(update.shape[-1] * 3)], 3, dim=0)
mlp = weight[int(update.shape[-1] * 3) :]
# print(q.shape, k.shape, v.shape, mlp.shape)
if "to_q" in lora_name:
q += update.reshape(q.shape)
elif "to_k" in lora_name:
k += update.reshape(k.shape)
elif "to_v" in lora_name:
v += update.reshape(v.shape)
elif "proj_mlp" in lora_name:
mlp += update.reshape(mlp.shape)
weight = torch.cat([q, k, v, mlp], dim=0)
else:
if len(weight.size()) == 2:
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
else:
if len(weight.size()) == 2:
weight = weight + ratio * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
weight = (
weight
+ ratio
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
weight = weight + ratio * conved * scale
flux_state_dict[flux_key] = weight.to(loading_device, save_dtype)
merged_keys.add(flux_key)
del up_weight
del down_weight
del weight
logger.info(f"Merged keys: {sorted(list(merged_keys))}")
return flux_state_dict
def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False):
base_alphas = {} # alpha for merged model
base_dims = {}
merged_sd = {}
base_model = None
for model, ratio in zip(models, ratios):
logger.info(f"loading: {model}")
lora_sd, lora_metadata = load_state_dict(model, merge_dtype)
if lora_metadata is not None:
if base_model is None:
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None)
# get alpha and dim
alphas = {} # alpha for current model
dims = {} # dims for current model
for key in lora_sd.keys():
if "alpha" in key:
lora_module_name = key[: key.rfind(".alpha")]
alpha = float(lora_sd[key].detach().numpy())
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
elif "lora_down" in key:
lora_module_name = key[: key.rfind(".lora_down")]
dim = lora_sd[key].size()[0]
dims[lora_module_name] = dim
if lora_module_name not in base_dims:
base_dims[lora_module_name] = dim
for lora_module_name in dims.keys():
if lora_module_name not in alphas:
alpha = dims[lora_module_name]
alphas[lora_module_name] = alpha
if lora_module_name not in base_alphas:
base_alphas[lora_module_name] = alpha
logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}")
# merge
logger.info("merging...")
for key in tqdm(lora_sd.keys()):
if "alpha" in key:
continue
if "lora_up" in key and concat:
concat_dim = 1
elif "lora_down" in key and concat:
concat_dim = 0
else:
concat_dim = None
lora_module_name = key[: key.rfind(".lora_")]
base_alpha = base_alphas[lora_module_name]
alpha = alphas[lora_module_name]
scale = math.sqrt(alpha / base_alpha) * ratio
scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。
if key in merged_sd:
assert (
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None
), "weights shape mismatch, different dims? / 重みのサイズが合いません。dimが異なる可能性があります。"
if concat_dim is not None:
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim)
else:
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale
else:
merged_sd[key] = lora_sd[key] * scale
# set alpha to sd
for lora_module_name, alpha in base_alphas.items():
key = lora_module_name + ".alpha"
merged_sd[key] = torch.tensor(alpha)
if shuffle:
key_down = lora_module_name + ".lora_down.weight"
key_up = lora_module_name + ".lora_up.weight"
dim = merged_sd[key_down].shape[0]
perm = torch.randperm(dim)
merged_sd[key_down] = merged_sd[key_down][perm]
merged_sd[key_up] = merged_sd[key_up][:, perm]
logger.info("merged model")
logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}")
# check all dims are same
dims_list = list(set(base_dims.values()))
alphas_list = list(set(base_alphas.values()))
all_same_dims = True
all_same_alphas = True
for dims in dims_list:
if dims != dims_list[0]:
all_same_dims = False
break
for alphas in alphas_list:
if alphas != alphas_list[0]:
all_same_alphas = False
break
# build minimum metadata
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic"
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic"
metadata = train_util.build_minimum_network_metadata(str(False), base_model, "networks.lora", dims, alphas, None)
return merged_sd, metadata
def merge(args):
if args.models is None:
args.models = []
if args.ratios is None:
args.ratios = []
assert len(args.models) == len(
args.ratios
), "number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください"
merge_dtype = str_to_dtype(args.precision)
save_dtype = str_to_dtype(args.save_precision)
if save_dtype is None:
save_dtype = merge_dtype
assert (
args.save_to or args.clip_l_save_to or args.t5xxl_save_to
), "save_to or clip_l_save_to or t5xxl_save_to must be specified / save_toまたはclip_l_save_toまたはt5xxl_save_toを指定してください"
dest_dir = os.path.dirname(args.save_to or args.clip_l_save_to or args.t5xxl_save_to)
if not os.path.exists(dest_dir):
logger.info(f"creating directory: {dest_dir}")
os.makedirs(dest_dir)
if args.flux_model is not None or args.clip_l is not None or args.t5xxl is not None:
if not args.diffusers:
assert (args.clip_l is None and args.clip_l_save_to is None) or (
args.clip_l is not None and args.clip_l_save_to is not None
), "clip_l_save_to must be specified if clip_l is specified / clip_lが指定されている場合はclip_l_save_toも指定してください"
assert (args.t5xxl is None and args.t5xxl_save_to is None) or (
args.t5xxl is not None and args.t5xxl_save_to is not None
), "t5xxl_save_to must be specified if t5xxl is specified / t5xxlが指定されている場合はt5xxl_save_toも指定してください"
flux_state_dict, clip_l_state_dict, t5xxl_state_dict = merge_to_flux_model(
args.loading_device,
args.working_device,
args.flux_model,
args.clip_l,
args.t5xxl,
args.models,
args.ratios,
merge_dtype,
save_dtype,
args.mem_eff_load_save,
)
else:
assert (
args.clip_l is None and args.t5xxl is None
), "clip_l and t5xxl are not supported with --diffusers / clip_l、t5xxlはDiffusersではサポートされていません"
flux_state_dict = merge_to_flux_model_diffusers(
args.loading_device,
args.working_device,
args.flux_model,
args.models,
args.ratios,
merge_dtype,
save_dtype,
args.mem_eff_load_save,
)
clip_l_state_dict = None
t5xxl_state_dict = None
if args.no_metadata or (flux_state_dict is None or len(flux_state_dict) == 0):
sai_metadata = None
else:
merged_from = sai_model_spec.build_merged_from([args.flux_model] + args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
None, False, False, False, False, False, time.time(), title=title, merged_from=merged_from, flux="dev"
)
if flux_state_dict is not None and len(flux_state_dict) > 0:
logger.info(f"saving FLUX model to: {args.save_to}")
save_to_file(args.save_to, flux_state_dict, save_dtype, sai_metadata, args.mem_eff_load_save)
if clip_l_state_dict is not None and len(clip_l_state_dict) > 0:
logger.info(f"saving clip_l model to: {args.clip_l_save_to}")
save_to_file(args.clip_l_save_to, clip_l_state_dict, save_dtype, None, args.mem_eff_load_save)
if t5xxl_state_dict is not None and len(t5xxl_state_dict) > 0:
logger.info(f"saving t5xxl model to: {args.t5xxl_save_to}")
save_to_file(args.t5xxl_save_to, t5xxl_state_dict, save_dtype, None, args.mem_eff_load_save)
else:
flux_state_dict, metadata = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle)
logger.info("calculating hashes and creating metadata...")
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(flux_state_dict, metadata)
metadata["sshs_model_hash"] = model_hash
metadata["sshs_legacy_hash"] = legacy_hash
if not args.no_metadata:
merged_from = sai_model_spec.build_merged_from(args.models)
title = os.path.splitext(os.path.basename(args.save_to))[0]
sai_metadata = sai_model_spec.build_metadata(
flux_state_dict, False, False, False, True, False, time.time(), title=title, merged_from=merged_from, flux="dev"
)
metadata.update(sai_metadata)
logger.info(f"saving model to: {args.save_to}")
save_to_file(args.save_to, flux_state_dict, save_dtype, metadata)
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument(
"--save_precision",
type=str,
default=None,
help="precision in saving, same to merging if omitted. supported types: "
"float32, fp16, bf16, fp8 (same as fp8_e4m3fn), fp8_e4m3fn, fp8_e4m3fnuz, fp8_e5m2, fp8_e5m2fnuz"
" / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ",
)
parser.add_argument(
"--precision",
type=str,
default="float",
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)",
)
parser.add_argument(
"--flux_model",
type=str,
default=None,
help="FLUX.1 model to load, merge LoRA models if omitted / 読み込むモデル、指定しない場合はLoRAモデルをマージする",
)
parser.add_argument(
"--clip_l",
type=str,
default=None,
help="path to clip_l (*.sft or *.safetensors), should be float16 / clip_lのパス(*.sftまたは*.safetensors)",
)
parser.add_argument(
"--t5xxl",
type=str,
default=None,
help="path to t5xxl (*.sft or *.safetensors), should be float16 / t5xxlのパス(*.sftまたは*.safetensors)",
)
parser.add_argument(
"--mem_eff_load_save",
action="store_true",
help="use custom memory efficient load and save functions for FLUX.1 model"
" / カスタムのメモリ効率の良い読み込みと保存関数をFLUX.1モデルに使用する",
)
parser.add_argument(
"--loading_device",
type=str,
default="cpu",
help="device to load FLUX.1 model. LoRA models are loaded on CPU / FLUX.1モデルを読み込むデバイス。LoRAモデルはCPUで読み込まれます",
)
parser.add_argument(
"--working_device",
type=str,
default="cpu",
help="device to work (merge). Merging LoRA models are done on CPU."
+ " / 作業(マージ)するデバイス。LoRAモデルのマージはCPUで行われます。",
)
parser.add_argument(
"--save_to",
type=str,
default=None,
help="destination file name: safetensors file / 保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--clip_l_save_to",
type=str,
default=None,
help="destination file name for clip_l: safetensors file / clip_lの保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--t5xxl_save_to",
type=str,
default=None,
help="destination file name for t5xxl: safetensors file / t5xxlの保存先のファイル名、safetensorsファイル",
)
parser.add_argument(
"--models",
type=str,
nargs="*",
help="LoRA models to merge: safetensors file / マージするLoRAモデル、safetensorsファイル",
)
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率")
parser.add_argument(
"--no_metadata",
action="store_true",
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / "
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)",
)
parser.add_argument(
"--concat",
action="store_true",
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / "
+ "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="shuffle lora weight./ " + "LoRAの重みをシャッフルする",
)
parser.add_argument(
"--diffusers",
action="store_true",
help="merge Diffusers (?) LoRA models / Diffusers (?) LoRAモデルをマージする",
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
merge(args)