Spaces:
Running
on
Zero
Running
on
Zero
# Convert LoRA to different rank approximation (should only be used to go to lower rank) | |
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py | |
# Thanks to cloneofsimo | |
import os | |
import argparse | |
import torch | |
from safetensors.torch import load_file, save_file, safe_open | |
from tqdm import tqdm | |
import numpy as np | |
from library import train_util | |
from library import model_util | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
MIN_SV = 1e-6 | |
# Model save and load functions | |
def load_state_dict(file_name, dtype): | |
if model_util.is_safetensors(file_name): | |
sd = load_file(file_name) | |
with safe_open(file_name, framework="pt") as f: | |
metadata = f.metadata() | |
else: | |
sd = torch.load(file_name, map_location="cpu") | |
metadata = None | |
for key in list(sd.keys()): | |
if type(sd[key]) == torch.Tensor: | |
sd[key] = sd[key].to(dtype) | |
return sd, metadata | |
def save_to_file(file_name, state_dict, metadata): | |
if model_util.is_safetensors(file_name): | |
save_file(state_dict, file_name, metadata) | |
else: | |
torch.save(state_dict, file_name) | |
# Indexing functions | |
def index_sv_cumulative(S, target): | |
original_sum = float(torch.sum(S)) | |
cumulative_sums = torch.cumsum(S, dim=0) / original_sum | |
index = int(torch.searchsorted(cumulative_sums, target)) + 1 | |
index = max(1, min(index, len(S) - 1)) | |
return index | |
def index_sv_fro(S, target): | |
S_squared = S.pow(2) | |
S_fro_sq = float(torch.sum(S_squared)) | |
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq | |
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1 | |
index = max(1, min(index, len(S) - 1)) | |
return index | |
def index_sv_ratio(S, target): | |
max_sv = S[0] | |
min_sv = max_sv / target | |
index = int(torch.sum(S > min_sv).item()) | |
index = max(1, min(index, len(S) - 1)) | |
return index | |
# Modified from Kohaku-blueleaf's extract/merge functions | |
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): | |
out_size, in_size, kernel_size, _ = weight.size() | |
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device)) | |
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) | |
lora_rank = param_dict["new_rank"] | |
U = U[:, :lora_rank] | |
S = S[:lora_rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:lora_rank, :] | |
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu() | |
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu() | |
del U, S, Vh, weight | |
return param_dict | |
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): | |
out_size, in_size = weight.size() | |
U, S, Vh = torch.linalg.svd(weight.to(device)) | |
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) | |
lora_rank = param_dict["new_rank"] | |
U = U[:, :lora_rank] | |
S = S[:lora_rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:lora_rank, :] | |
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu() | |
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu() | |
del U, S, Vh, weight | |
return param_dict | |
def merge_conv(lora_down, lora_up, device): | |
in_rank, in_size, kernel_size, k_ = lora_down.shape | |
out_size, out_rank, _, _ = lora_up.shape | |
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch" | |
lora_down = lora_down.to(device) | |
lora_up = lora_up.to(device) | |
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1) | |
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size) | |
del lora_up, lora_down | |
return weight | |
def merge_linear(lora_down, lora_up, device): | |
in_rank, in_size = lora_down.shape | |
out_size, out_rank = lora_up.shape | |
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch" | |
lora_down = lora_down.to(device) | |
lora_up = lora_up.to(device) | |
weight = lora_up @ lora_down | |
del lora_up, lora_down | |
return weight | |
# Calculate new rank | |
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1): | |
param_dict = {} | |
if dynamic_method == "sv_ratio": | |
# Calculate new dim and alpha based off ratio | |
new_rank = index_sv_ratio(S, dynamic_param) + 1 | |
new_alpha = float(scale * new_rank) | |
elif dynamic_method == "sv_cumulative": | |
# Calculate new dim and alpha based off cumulative sum | |
new_rank = index_sv_cumulative(S, dynamic_param) + 1 | |
new_alpha = float(scale * new_rank) | |
elif dynamic_method == "sv_fro": | |
# Calculate new dim and alpha based off sqrt sum of squares | |
new_rank = index_sv_fro(S, dynamic_param) + 1 | |
new_alpha = float(scale * new_rank) | |
else: | |
new_rank = rank | |
new_alpha = float(scale * new_rank) | |
if S[0] <= MIN_SV: # Zero matrix, set dim to 1 | |
new_rank = 1 | |
new_alpha = float(scale * new_rank) | |
elif new_rank > rank: # cap max rank at rank | |
new_rank = rank | |
new_alpha = float(scale * new_rank) | |
# Calculate resize info | |
s_sum = torch.sum(torch.abs(S)) | |
s_rank = torch.sum(torch.abs(S[:new_rank])) | |
S_squared = S.pow(2) | |
s_fro = torch.sqrt(torch.sum(S_squared)) | |
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank])) | |
fro_percent = float(s_red_fro / s_fro) | |
param_dict["new_rank"] = new_rank | |
param_dict["new_alpha"] = new_alpha | |
param_dict["sum_retained"] = (s_rank) / s_sum | |
param_dict["fro_retained"] = fro_percent | |
param_dict["max_ratio"] = S[0] / S[new_rank - 1] | |
return param_dict | |
def resize_lora_model(lora_sd, new_rank, new_conv_rank, save_dtype, device, dynamic_method, dynamic_param, verbose): | |
network_alpha = None | |
network_dim = None | |
verbose_str = "\n" | |
fro_list = [] | |
# Extract loaded lora dim and alpha | |
for key, value in lora_sd.items(): | |
if network_alpha is None and "alpha" in key: | |
network_alpha = value | |
if network_dim is None and "lora_down" in key and len(value.size()) == 2: | |
network_dim = value.size()[0] | |
if network_alpha is not None and network_dim is not None: | |
break | |
if network_alpha is None: | |
network_alpha = network_dim | |
scale = network_alpha / network_dim | |
if dynamic_method: | |
logger.info( | |
f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}" | |
) | |
lora_down_weight = None | |
lora_up_weight = None | |
o_lora_sd = lora_sd.copy() | |
block_down_name = None | |
block_up_name = None | |
with torch.no_grad(): | |
for key, value in tqdm(lora_sd.items()): | |
weight_name = None | |
if "lora_down" in key: | |
block_down_name = key.rsplit(".lora_down", 1)[0] | |
weight_name = key.rsplit(".", 1)[-1] | |
lora_down_weight = value | |
else: | |
continue | |
# find corresponding lora_up and alpha | |
block_up_name = block_down_name | |
lora_up_weight = lora_sd.get(block_up_name + ".lora_up." + weight_name, None) | |
lora_alpha = lora_sd.get(block_down_name + ".alpha", None) | |
weights_loaded = lora_down_weight is not None and lora_up_weight is not None | |
if weights_loaded: | |
conv2d = len(lora_down_weight.size()) == 4 | |
if lora_alpha is None: | |
scale = 1.0 | |
else: | |
scale = lora_alpha / lora_down_weight.size()[0] | |
if conv2d: | |
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device) | |
param_dict = extract_conv(full_weight_matrix, new_conv_rank, dynamic_method, dynamic_param, device, scale) | |
else: | |
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device) | |
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale) | |
if verbose: | |
max_ratio = param_dict["max_ratio"] | |
sum_retained = param_dict["sum_retained"] | |
fro_retained = param_dict["fro_retained"] | |
if not np.isnan(fro_retained): | |
fro_list.append(float(fro_retained)) | |
verbose_str += f"{block_down_name:75} | " | |
verbose_str += ( | |
f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}" | |
) | |
if verbose and dynamic_method: | |
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n" | |
else: | |
verbose_str += "\n" | |
new_alpha = param_dict["new_alpha"] | |
o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous() | |
o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous() | |
o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype) | |
block_down_name = None | |
block_up_name = None | |
lora_down_weight = None | |
lora_up_weight = None | |
weights_loaded = False | |
del param_dict | |
if verbose: | |
print(verbose_str) | |
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}") | |
logger.info("resizing complete") | |
return o_lora_sd, network_dim, new_alpha | |
def resize(args): | |
if args.save_to is None or not ( | |
args.save_to.endswith(".ckpt") | |
or args.save_to.endswith(".pt") | |
or args.save_to.endswith(".pth") | |
or args.save_to.endswith(".safetensors") | |
): | |
raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.") | |
args.new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank | |
def str_to_dtype(p): | |
if p == "float": | |
return torch.float | |
if p == "fp16": | |
return torch.float16 | |
if p == "bf16": | |
return torch.bfloat16 | |
return None | |
if args.dynamic_method and not args.dynamic_param: | |
raise Exception("If using dynamic_method, then dynamic_param is required") | |
merge_dtype = str_to_dtype("float") # matmul method above only seems to work in float32 | |
save_dtype = str_to_dtype(args.save_precision) | |
if save_dtype is None: | |
save_dtype = merge_dtype | |
logger.info("loading Model...") | |
lora_sd, metadata = load_state_dict(args.model, merge_dtype) | |
logger.info("Resizing Lora...") | |
state_dict, old_dim, new_alpha = resize_lora_model( | |
lora_sd, args.new_rank, args.new_conv_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose | |
) | |
# update metadata | |
if metadata is None: | |
metadata = {} | |
comment = metadata.get("ss_training_comment", "") | |
if not args.dynamic_method: | |
conv_desc = "" if args.new_rank == args.new_conv_rank else f" (conv: {args.new_conv_rank})" | |
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}{conv_desc}; {comment}" | |
metadata["ss_network_dim"] = str(args.new_rank) | |
metadata["ss_network_alpha"] = str(new_alpha) | |
else: | |
metadata["ss_training_comment"] = ( | |
f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}" | |
) | |
metadata["ss_network_dim"] = "Dynamic" | |
metadata["ss_network_alpha"] = "Dynamic" | |
# cast to save_dtype before calculating hashes | |
for key in list(state_dict.keys()): | |
value = state_dict[key] | |
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: | |
state_dict[key] = value.to(save_dtype) | |
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
logger.info(f"saving model to: {args.save_to}") | |
save_to_file(args.save_to, state_dict, metadata) | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat", | |
) | |
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") | |
parser.add_argument( | |
"--new_conv_rank", | |
type=int, | |
default=None, | |
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ", | |
) | |
parser.add_argument( | |
"--save_to", | |
type=str, | |
default=None, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--model", | |
type=str, | |
default=None, | |
help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う" | |
) | |
parser.add_argument( | |
"--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する" | |
) | |
parser.add_argument( | |
"--dynamic_method", | |
type=str, | |
default=None, | |
choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"], | |
help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank", | |
) | |
parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction") | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
resize(args) | |