Spaces:
Running
on
Zero
Running
on
Zero
import itertools | |
import math | |
import argparse | |
import os | |
import time | |
import concurrent.futures | |
import torch | |
from safetensors.torch import load_file, save_file | |
from tqdm import tqdm | |
from library import sai_model_spec, sdxl_model_util, train_util | |
import library.model_util as model_util | |
import lora | |
import oft | |
from svd_merge_lora import format_lbws, get_lbw_block_index, LAYER26 | |
from library.utils import setup_logging | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
def load_state_dict(file_name, dtype): | |
if os.path.splitext(file_name)[1] == ".safetensors": | |
sd = load_file(file_name) | |
metadata = train_util.load_metadata_from_safetensors(file_name) | |
else: | |
sd = torch.load(file_name, map_location="cpu") | |
metadata = {} | |
for key in list(sd.keys()): | |
if type(sd[key]) == torch.Tensor: | |
sd[key] = sd[key].to(dtype) | |
return sd, metadata | |
def save_to_file(file_name, model, metadata): | |
if os.path.splitext(file_name)[1] == ".safetensors": | |
save_file(model, file_name, metadata=metadata) | |
else: | |
torch.save(model, file_name) | |
def detect_method_from_training_model(models, dtype): | |
for model in models: | |
# TODO It is better to use key names to detect the method | |
lora_sd, _ = load_state_dict(model, dtype) | |
for key in tqdm(lora_sd.keys()): | |
if "lora_up" in key or "lora_down" in key: | |
return "LoRA" | |
elif "oft_blocks" in key: | |
return "OFT" | |
def merge_to_sd_model(text_encoder1, text_encoder2, unet, models, ratios, lbws, merge_dtype): | |
text_encoder1.to(merge_dtype) | |
text_encoder2.to(merge_dtype) | |
unet.to(merge_dtype) | |
# detect the method: OFT or LoRA_module | |
method = detect_method_from_training_model(models, merge_dtype) | |
logger.info(f"method:{method}") | |
if lbws: | |
lbws, _, LBW_TARGET_IDX = format_lbws(lbws) | |
else: | |
LBW_TARGET_IDX = [] | |
# create module map | |
name_to_module = {} | |
for i, root_module in enumerate([text_encoder1, text_encoder2, unet]): | |
if method == "LoRA": | |
if i <= 1: | |
if i == 0: | |
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER1 | |
else: | |
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER2 | |
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE | |
else: | |
prefix = lora.LoRANetwork.LORA_PREFIX_UNET | |
target_replace_modules = ( | |
lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
) | |
elif method == "OFT": | |
prefix = oft.OFTNetwork.OFT_PREFIX_UNET | |
# ALL_LINEAR includes ATTN_ONLY, so we don't need to specify ATTN_ONLY | |
target_replace_modules = ( | |
oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_ALL_LINEAR + oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 | |
) | |
for name, module in root_module.named_modules(): | |
if module.__class__.__name__ in target_replace_modules: | |
for child_name, child_module in module.named_modules(): | |
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d": | |
lora_name = prefix + "." + name + "." + child_name | |
lora_name = lora_name.replace(".", "_") | |
name_to_module[lora_name] = child_module | |
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): | |
logger.info(f"loading: {model}") | |
lora_sd, _ = load_state_dict(model, merge_dtype) | |
logger.info(f"merging...") | |
if lbw: | |
lbw_weights = [1] * 26 | |
for index, value in zip(LBW_TARGET_IDX, lbw): | |
lbw_weights[index] = value | |
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") | |
if method == "LoRA": | |
for key in tqdm(lora_sd.keys()): | |
if "lora_down" in key: | |
up_key = key.replace("lora_down", "lora_up") | |
alpha_key = key[: key.index("lora_down")] + "alpha" | |
# find original module for this lora | |
module_name = ".".join(key.split(".")[:-2]) # remove trailing ".lora_down.weight" | |
if module_name not in name_to_module: | |
logger.info(f"no module found for LoRA weight: {key}") | |
continue | |
module = name_to_module[module_name] | |
# logger.info(f"apply {key} to {module}") | |
down_weight = lora_sd[key] | |
up_weight = lora_sd[up_key] | |
dim = down_weight.size()[0] | |
alpha = lora_sd.get(alpha_key, dim) | |
scale = alpha / dim | |
if lbw: | |
index = get_lbw_block_index(key, True) | |
is_lbw_target = index in LBW_TARGET_IDX | |
if is_lbw_target: | |
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける | |
# W <- W + U * D | |
weight = module.weight | |
# logger.info(module_name, down_weight.size(), up_weight.size()) | |
if len(weight.size()) == 2: | |
# linear | |
weight = weight + ratio * (up_weight @ down_weight) * scale | |
elif down_weight.size()[2:4] == (1, 1): | |
# conv2d 1x1 | |
weight = ( | |
weight | |
+ ratio | |
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) | |
* scale | |
) | |
else: | |
# conv2d 3x3 | |
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) | |
# logger.info(conved.size(), weight.size(), module.stride, module.padding) | |
weight = weight + ratio * conved * scale | |
module.weight = torch.nn.Parameter(weight) | |
elif method == "OFT": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
for key in tqdm(lora_sd.keys()): | |
if "oft_blocks" in key: | |
oft_blocks = lora_sd[key] | |
dim = oft_blocks.shape[0] | |
break | |
for key in tqdm(lora_sd.keys()): | |
if "alpha" in key: | |
oft_blocks = lora_sd[key] | |
alpha = oft_blocks.item() | |
break | |
def merge_to(key): | |
if "alpha" in key: | |
return | |
# find original module for this OFT | |
module_name = ".".join(key.split(".")[:-1]) | |
if module_name not in name_to_module: | |
logger.info(f"no module found for OFT weight: {key}") | |
return | |
module = name_to_module[module_name] | |
# logger.info(f"apply {key} to {module}") | |
oft_blocks = lora_sd[key] | |
if isinstance(module, torch.nn.Linear): | |
out_dim = module.out_features | |
elif isinstance(module, torch.nn.Conv2d): | |
out_dim = module.out_channels | |
num_blocks = dim | |
block_size = out_dim // dim | |
constraint = (0 if alpha is None else alpha) * out_dim | |
multiplier = 1 | |
if lbw: | |
index = get_lbw_block_index(key, False) | |
is_lbw_target = index in LBW_TARGET_IDX | |
if is_lbw_target: | |
multiplier *= lbw_weights[index] | |
block_Q = oft_blocks - oft_blocks.transpose(1, 2) | |
norm_Q = torch.norm(block_Q.flatten()) | |
new_norm_Q = torch.clamp(norm_Q, max=constraint) | |
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) | |
I = torch.eye(block_size, device=oft_blocks.device).unsqueeze(0).repeat(num_blocks, 1, 1) | |
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) | |
block_R_weighted = multiplier * block_R + (1 - multiplier) * I | |
R = torch.block_diag(*block_R_weighted) | |
# get org weight | |
org_sd = module.state_dict() | |
org_weight = org_sd["weight"].to(device) | |
R = R.to(org_weight.device, dtype=org_weight.dtype) | |
if org_weight.dim() == 4: | |
weight = torch.einsum("oihw, op -> pihw", org_weight, R) | |
else: | |
weight = torch.einsum("oi, op -> pi", org_weight, R) | |
weight = weight.contiguous() # Make Tensor contiguous; required due to ThreadPoolExecutor | |
module.weight = torch.nn.Parameter(weight) | |
# TODO multi-threading may cause OOM on CPU if cpu_count is too high and RAM is not enough | |
max_workers = 1 if device.type != "cpu" else None # avoid OOM on GPU | |
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: | |
list(tqdm(executor.map(merge_to, lora_sd.keys()), total=len(lora_sd.keys()))) | |
def merge_lora_models(models, ratios, lbws, merge_dtype, concat=False, shuffle=False): | |
base_alphas = {} # alpha for merged model | |
base_dims = {} | |
# detect the method: OFT or LoRA_module | |
method = detect_method_from_training_model(models, merge_dtype) | |
if method == "OFT": | |
raise ValueError( | |
"OFT model is not supported for merging OFT models. / OFTモデルはOFTモデル同士のマージには対応していません" | |
) | |
if lbws: | |
lbws, _, LBW_TARGET_IDX = format_lbws(lbws) | |
else: | |
LBW_TARGET_IDX = [] | |
merged_sd = {} | |
v2 = None | |
base_model = None | |
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): | |
logger.info(f"loading: {model}") | |
lora_sd, lora_metadata = load_state_dict(model, merge_dtype) | |
if lbw: | |
lbw_weights = [1] * 26 | |
for index, value in zip(LBW_TARGET_IDX, lbw): | |
lbw_weights[index] = value | |
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") | |
if lora_metadata is not None: | |
if v2 is None: | |
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) # returns string, SDXLはv2がないのでFalseのはず | |
if base_model is None: | |
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) | |
# get alpha and dim | |
alphas = {} # alpha for current model | |
dims = {} # dims for current model | |
for key in lora_sd.keys(): | |
if "alpha" in key: | |
lora_module_name = key[: key.rfind(".alpha")] | |
alpha = float(lora_sd[key].detach().numpy()) | |
alphas[lora_module_name] = alpha | |
if lora_module_name not in base_alphas: | |
base_alphas[lora_module_name] = alpha | |
elif "lora_down" in key: | |
lora_module_name = key[: key.rfind(".lora_down")] | |
dim = lora_sd[key].size()[0] | |
dims[lora_module_name] = dim | |
if lora_module_name not in base_dims: | |
base_dims[lora_module_name] = dim | |
for lora_module_name in dims.keys(): | |
if lora_module_name not in alphas: | |
alpha = dims[lora_module_name] | |
alphas[lora_module_name] = alpha | |
if lora_module_name not in base_alphas: | |
base_alphas[lora_module_name] = alpha | |
logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}") | |
# merge | |
logger.info(f"merging...") | |
for key in tqdm(lora_sd.keys()): | |
if "alpha" in key: | |
continue | |
if "lora_up" in key and concat: | |
concat_dim = 1 | |
elif "lora_down" in key and concat: | |
concat_dim = 0 | |
else: | |
concat_dim = None | |
lora_module_name = key[: key.rfind(".lora_")] | |
base_alpha = base_alphas[lora_module_name] | |
alpha = alphas[lora_module_name] | |
scale = math.sqrt(alpha / base_alpha) * ratio | |
scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。 | |
if lbw: | |
index = get_lbw_block_index(key, True) | |
is_lbw_target = index in LBW_TARGET_IDX | |
if is_lbw_target: | |
scale *= lbw_weights[index] # keyがlbwの対象であれば、lbwの重みを掛ける | |
if key in merged_sd: | |
assert ( | |
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None | |
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません" | |
if concat_dim is not None: | |
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim) | |
else: | |
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale | |
else: | |
merged_sd[key] = lora_sd[key] * scale | |
# set alpha to sd | |
for lora_module_name, alpha in base_alphas.items(): | |
key = lora_module_name + ".alpha" | |
merged_sd[key] = torch.tensor(alpha) | |
if shuffle: | |
key_down = lora_module_name + ".lora_down.weight" | |
key_up = lora_module_name + ".lora_up.weight" | |
dim = merged_sd[key_down].shape[0] | |
perm = torch.randperm(dim) | |
merged_sd[key_down] = merged_sd[key_down][perm] | |
merged_sd[key_up] = merged_sd[key_up][:, perm] | |
logger.info("merged model") | |
logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}") | |
# check all dims are same | |
dims_list = list(set(base_dims.values())) | |
alphas_list = list(set(base_alphas.values())) | |
all_same_dims = True | |
all_same_alphas = True | |
for dims in dims_list: | |
if dims != dims_list[0]: | |
all_same_dims = False | |
break | |
for alphas in alphas_list: | |
if alphas != alphas_list[0]: | |
all_same_alphas = False | |
break | |
# build minimum metadata | |
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic" | |
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic" | |
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None) | |
return merged_sd, metadata | |
def merge(args): | |
assert len(args.models) == len( | |
args.ratios | |
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" | |
if args.lbws: | |
assert len(args.models) == len( | |
args.lbws | |
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください" | |
else: | |
args.lbws = [] # zip_longestで扱えるようにlbws未使用時には空のリストにしておく | |
def str_to_dtype(p): | |
if p == "float": | |
return torch.float | |
if p == "fp16": | |
return torch.float16 | |
if p == "bf16": | |
return torch.bfloat16 | |
return None | |
merge_dtype = str_to_dtype(args.precision) | |
save_dtype = str_to_dtype(args.save_precision) | |
if save_dtype is None: | |
save_dtype = merge_dtype | |
if args.sd_model is not None: | |
logger.info(f"loading SD model: {args.sd_model}") | |
( | |
text_model1, | |
text_model2, | |
vae, | |
unet, | |
logit_scale, | |
ckpt_info, | |
) = sdxl_model_util.load_models_from_sdxl_checkpoint(sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.sd_model, "cpu") | |
merge_to_sd_model(text_model1, text_model2, unet, args.models, args.ratios, args.lbws, merge_dtype) | |
if args.no_metadata: | |
sai_metadata = None | |
else: | |
merged_from = sai_model_spec.build_merged_from([args.sd_model] + args.models) | |
title = os.path.splitext(os.path.basename(args.save_to))[0] | |
sai_metadata = sai_model_spec.build_metadata( | |
None, False, False, True, False, False, time.time(), title=title, merged_from=merged_from | |
) | |
logger.info(f"saving SD model to: {args.save_to}") | |
sdxl_model_util.save_stable_diffusion_checkpoint( | |
args.save_to, text_model1, text_model2, unet, 0, 0, ckpt_info, vae, logit_scale, sai_metadata, save_dtype | |
) | |
else: | |
state_dict, metadata = merge_lora_models(args.models, args.ratios, args.lbws, merge_dtype, args.concat, args.shuffle) | |
# cast to save_dtype before calculating hashes | |
for key in list(state_dict.keys()): | |
value = state_dict[key] | |
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: | |
state_dict[key] = value.to(save_dtype) | |
logger.info(f"calculating hashes and creating metadata...") | |
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) | |
metadata["sshs_model_hash"] = model_hash | |
metadata["sshs_legacy_hash"] = legacy_hash | |
if not args.no_metadata: | |
merged_from = sai_model_spec.build_merged_from(args.models) | |
title = os.path.splitext(os.path.basename(args.save_to))[0] | |
sai_metadata = sai_model_spec.build_metadata( | |
state_dict, False, False, True, True, False, time.time(), title=title, merged_from=merged_from | |
) | |
metadata.update(sai_metadata) | |
logger.info(f"saving model to: {args.save_to}") | |
save_to_file(args.save_to, state_dict, metadata) | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--save_precision", | |
type=str, | |
default=None, | |
choices=[None, "float", "fp16", "bf16"], | |
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
default="float", | |
choices=["float", "fp16", "bf16"], | |
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", | |
) | |
parser.add_argument( | |
"--sd_model", | |
type=str, | |
default=None, | |
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする", | |
) | |
parser.add_argument( | |
"--save_to", | |
type=str, | |
default=None, | |
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", | |
) | |
parser.add_argument( | |
"--models", | |
type=str, | |
nargs="*", | |
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors", | |
) | |
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") | |
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率") | |
parser.add_argument( | |
"--no_metadata", | |
action="store_true", | |
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " | |
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", | |
) | |
parser.add_argument( | |
"--concat", | |
action="store_true", | |
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / " | |
+ "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)", | |
) | |
parser.add_argument( | |
"--shuffle", | |
action="store_true", | |
help="shuffle lora weight./ " + "LoRAの重みをシャッフルする", | |
) | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
merge(args) | |