Spaces:
Running
on
Zero
Running
on
Zero
import importlib | |
import argparse | |
import math | |
import os | |
import sys | |
import random | |
import time | |
import json | |
from multiprocessing import Value | |
from typing import Any, List | |
import toml | |
from tqdm import tqdm | |
import torch | |
from library.device_utils import init_ipex, clean_memory_on_device | |
init_ipex() | |
from accelerate.utils import set_seed | |
from diffusers import DDPMScheduler | |
from library import deepspeed_utils, model_util, strategy_base, strategy_sd | |
import library.train_util as train_util | |
from library.train_util import DreamBoothDataset | |
import library.config_util as config_util | |
from library.config_util import ( | |
ConfigSanitizer, | |
BlueprintGenerator, | |
) | |
import library.huggingface_util as huggingface_util | |
import library.custom_train_functions as custom_train_functions | |
from library.custom_train_functions import ( | |
apply_snr_weight, | |
get_weighted_text_embeddings, | |
prepare_scheduler_for_custom_training, | |
scale_v_prediction_loss_like_noise_prediction, | |
add_v_prediction_like_loss, | |
apply_debiased_estimation, | |
apply_masked_loss, | |
) | |
from library.utils import setup_logging, add_logging_arguments | |
setup_logging() | |
import logging | |
logger = logging.getLogger(__name__) | |
class NetworkTrainer: | |
def __init__(self): | |
self.vae_scale_factor = 0.18215 | |
self.is_sdxl = False | |
# TODO 他のスクリプトと共通化する | |
def generate_step_logs( | |
self, | |
args: argparse.Namespace, | |
current_loss, | |
avr_loss, | |
lr_scheduler, | |
lr_descriptions, | |
keys_scaled=None, | |
mean_norm=None, | |
maximum_norm=None, | |
): | |
logs = {"loss/current": current_loss, "loss/average": avr_loss} | |
if keys_scaled is not None: | |
logs["max_norm/keys_scaled"] = keys_scaled | |
logs["max_norm/average_key_norm"] = mean_norm | |
logs["max_norm/max_key_norm"] = maximum_norm | |
lrs = lr_scheduler.get_last_lr() | |
for i, lr in enumerate(lrs): | |
if lr_descriptions is not None: | |
lr_desc = lr_descriptions[i] | |
else: | |
idx = i - (0 if args.network_train_unet_only else -1) | |
if idx == -1: | |
lr_desc = "textencoder" | |
else: | |
if len(lrs) > 2: | |
lr_desc = f"group{idx}" | |
else: | |
lr_desc = "unet" | |
logs[f"lr/{lr_desc}"] = lr | |
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): | |
# tracking d*lr value | |
logs[f"lr/d*lr/{lr_desc}"] = ( | |
lr_scheduler.optimizers[-1].param_groups[i]["d"] * lr_scheduler.optimizers[-1].param_groups[i]["lr"] | |
) | |
return logs | |
def assert_extra_args(self, args, train_dataset_group): | |
train_dataset_group.verify_bucket_reso_steps(64) | |
def load_target_model(self, args, weight_dtype, accelerator): | |
text_encoder, vae, unet, _ = train_util.load_target_model(args, weight_dtype, accelerator) | |
# モデルに xformers とか memory efficient attention を組み込む | |
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa) | |
if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える | |
vae.set_use_memory_efficient_attention_xformers(args.xformers) | |
return model_util.get_model_version_str_for_sd1_sd2(args.v2, args.v_parameterization), text_encoder, vae, unet | |
def get_tokenize_strategy(self, args): | |
return strategy_sd.SdTokenizeStrategy(args.v2, args.max_token_length, args.tokenizer_cache_dir) | |
def get_tokenizers(self, tokenize_strategy: strategy_sd.SdTokenizeStrategy) -> List[Any]: | |
return [tokenize_strategy.tokenizer] | |
def get_latents_caching_strategy(self, args): | |
latents_caching_strategy = strategy_sd.SdSdxlLatentsCachingStrategy( | |
True, args.cache_latents_to_disk, args.vae_batch_size, args.skip_cache_check | |
) | |
return latents_caching_strategy | |
def get_text_encoding_strategy(self, args): | |
return strategy_sd.SdTextEncodingStrategy(args.clip_skip) | |
def get_text_encoder_outputs_caching_strategy(self, args): | |
return None | |
def get_models_for_text_encoding(self, args, accelerator, text_encoders): | |
""" | |
Returns a list of models that will be used for text encoding. SDXL uses wrapped and unwrapped models. | |
FLUX.1 and SD3 may cache some outputs of the text encoder, so return the models that will be used for encoding (not cached). | |
""" | |
return text_encoders | |
# returns a list of bool values indicating whether each text encoder should be trained | |
def get_text_encoders_train_flags(self, args, text_encoders): | |
return [True] * len(text_encoders) if self.is_train_text_encoder(args) else [False] * len(text_encoders) | |
def is_train_text_encoder(self, args): | |
return not args.network_train_unet_only | |
def cache_text_encoder_outputs_if_needed(self, args, accelerator, unet, vae, text_encoders, dataset, weight_dtype): | |
for t_enc in text_encoders: | |
t_enc.to(accelerator.device, dtype=weight_dtype) | |
def call_unet(self, args, accelerator, unet, noisy_latents, timesteps, text_conds, batch, weight_dtype, **kwargs): | |
noise_pred = unet(noisy_latents, timesteps, text_conds[0]).sample | |
return noise_pred | |
def all_reduce_network(self, accelerator, network): | |
for param in network.parameters(): | |
if param.grad is not None: | |
param.grad = accelerator.reduce(param.grad, reduction="mean") | |
def sample_images(self, accelerator, args, epoch, global_step, device, vae, tokenizers, text_encoder, unet): | |
train_util.sample_images(accelerator, args, epoch, global_step, device, vae, tokenizers[0], text_encoder, unet) | |
# region SD/SDXL | |
def post_process_network(self, args, accelerator, network, text_encoders, unet): | |
pass | |
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any: | |
noise_scheduler = DDPMScheduler( | |
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False | |
) | |
prepare_scheduler_for_custom_training(noise_scheduler, device) | |
if args.zero_terminal_snr: | |
custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler) | |
return noise_scheduler | |
def encode_images_to_latents(self, args, accelerator, vae, images): | |
return vae.encode(images).latent_dist.sample() | |
def shift_scale_latents(self, args, latents): | |
return latents * self.vae_scale_factor | |
def get_noise_pred_and_target( | |
self, | |
args, | |
accelerator, | |
noise_scheduler, | |
latents, | |
batch, | |
text_encoder_conds, | |
unet, | |
network, | |
weight_dtype, | |
train_unet, | |
): | |
# Sample noise, sample a random timestep for each image, and add noise to the latents, | |
# with noise offset and/or multires noise if specified | |
noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(args, noise_scheduler, latents) | |
# ensure the hidden state will require grad | |
if args.gradient_checkpointing: | |
for x in noisy_latents: | |
x.requires_grad_(True) | |
for t in text_encoder_conds: | |
t.requires_grad_(True) | |
# Predict the noise residual | |
with accelerator.autocast(): | |
noise_pred = self.call_unet( | |
args, | |
accelerator, | |
unet, | |
noisy_latents.requires_grad_(train_unet), | |
timesteps, | |
text_encoder_conds, | |
batch, | |
weight_dtype, | |
) | |
if args.v_parameterization: | |
# v-parameterization training | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
target = noise | |
# differential output preservation | |
if "custom_attributes" in batch: | |
diff_output_pr_indices = [] | |
for i, custom_attributes in enumerate(batch["custom_attributes"]): | |
if "diff_output_preservation" in custom_attributes and custom_attributes["diff_output_preservation"]: | |
diff_output_pr_indices.append(i) | |
if len(diff_output_pr_indices) > 0: | |
network.set_multiplier(0.0) | |
with torch.no_grad(), accelerator.autocast(): | |
noise_pred_prior = self.call_unet( | |
args, | |
accelerator, | |
unet, | |
noisy_latents, | |
timesteps, | |
text_encoder_conds, | |
batch, | |
weight_dtype, | |
indices=diff_output_pr_indices, | |
) | |
network.set_multiplier(1.0) # may be overwritten by "network_multipliers" in the next step | |
target[diff_output_pr_indices] = noise_pred_prior.to(target.dtype) | |
return noise_pred, target, timesteps, huber_c, None | |
def post_process_loss(self, loss, args, timesteps, noise_scheduler): | |
if args.min_snr_gamma: | |
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization) | |
if args.scale_v_pred_loss_like_noise_pred: | |
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler) | |
if args.v_pred_like_loss: | |
loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss) | |
if args.debiased_estimation_loss: | |
loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization) | |
return loss | |
def get_sai_model_spec(self, args): | |
return train_util.get_sai_model_spec(None, args, self.is_sdxl, True, False) | |
def update_metadata(self, metadata, args): | |
pass | |
def is_text_encoder_not_needed_for_training(self, args): | |
return False # use for sample images | |
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder): | |
# set top parameter requires_grad = True for gradient checkpointing works | |
text_encoder.text_model.embeddings.requires_grad_(True) | |
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype): | |
text_encoder.text_model.embeddings.to(dtype=weight_dtype) | |
def on_step_start(self, args, accelerator, network, text_encoders, unet, batch, weight_dtype): | |
pass | |
# endregion | |
def train(self, args): | |
session_id = random.randint(0, 2**32) | |
training_started_at = time.time() | |
train_util.verify_training_args(args) | |
train_util.prepare_dataset_args(args, True) | |
deepspeed_utils.prepare_deepspeed_args(args) | |
setup_logging(args, reset=True) | |
cache_latents = args.cache_latents | |
use_dreambooth_method = args.in_json is None | |
use_user_config = args.dataset_config is not None | |
if args.seed is None: | |
args.seed = random.randint(0, 2**32) | |
set_seed(args.seed) | |
tokenize_strategy = self.get_tokenize_strategy(args) | |
strategy_base.TokenizeStrategy.set_strategy(tokenize_strategy) | |
tokenizers = self.get_tokenizers(tokenize_strategy) # will be removed after sample_image is refactored | |
# prepare caching strategy: this must be set before preparing dataset. because dataset may use this strategy for initialization. | |
latents_caching_strategy = self.get_latents_caching_strategy(args) | |
strategy_base.LatentsCachingStrategy.set_strategy(latents_caching_strategy) | |
# データセットを準備する | |
if args.dataset_class is None: | |
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True)) | |
if use_user_config: | |
logger.info(f"Loading dataset config from {args.dataset_config}") | |
user_config = config_util.load_user_config(args.dataset_config) | |
ignored = ["train_data_dir", "reg_data_dir", "in_json"] | |
if any(getattr(args, attr) is not None for attr in ignored): | |
logger.warning( | |
"ignoring the following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format( | |
", ".join(ignored) | |
) | |
) | |
else: | |
if use_dreambooth_method: | |
logger.info("Using DreamBooth method.") | |
user_config = { | |
"datasets": [ | |
{ | |
"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs( | |
args.train_data_dir, args.reg_data_dir | |
) | |
} | |
] | |
} | |
else: | |
logger.info("Training with captions.") | |
user_config = { | |
"datasets": [ | |
{ | |
"subsets": [ | |
{ | |
"image_dir": args.train_data_dir, | |
"metadata_file": args.in_json, | |
} | |
] | |
} | |
] | |
} | |
blueprint = blueprint_generator.generate(user_config, args) | |
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group) | |
else: | |
# use arbitrary dataset class | |
train_dataset_group = train_util.load_arbitrary_dataset(args) | |
current_epoch = Value("i", 0) | |
current_step = Value("i", 0) | |
ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None | |
collator = train_util.collator_class(current_epoch, current_step, ds_for_collator) | |
if args.debug_dataset: | |
train_dataset_group.set_current_strategies() # dasaset needs to know the strategies explicitly | |
train_util.debug_dataset(train_dataset_group) | |
return | |
if len(train_dataset_group) == 0: | |
logger.error( | |
"No data found. Please verify arguments (train_data_dir must be the parent of folders with images) / 画像がありません。引数指定を確認してください(train_data_dirには画像があるフォルダではなく、画像があるフォルダの親フォルダを指定する必要があります)" | |
) | |
return | |
if cache_latents: | |
assert ( | |
train_dataset_group.is_latent_cacheable() | |
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません" | |
self.assert_extra_args(args, train_dataset_group) # may change some args | |
# acceleratorを準備する | |
logger.info("preparing accelerator") | |
accelerator = train_util.prepare_accelerator(args) | |
is_main_process = accelerator.is_main_process | |
# mixed precisionに対応した型を用意しておき適宜castする | |
weight_dtype, save_dtype = train_util.prepare_dtype(args) | |
vae_dtype = torch.float32 if args.no_half_vae else weight_dtype | |
# モデルを読み込む | |
model_version, text_encoder, vae, unet = self.load_target_model(args, weight_dtype, accelerator) | |
# text_encoder is List[CLIPTextModel] or CLIPTextModel | |
text_encoders = text_encoder if isinstance(text_encoder, list) else [text_encoder] | |
# 差分追加学習のためにモデルを読み込む | |
sys.path.append(os.path.dirname(__file__)) | |
accelerator.print("import network module:", args.network_module) | |
network_module = importlib.import_module(args.network_module) | |
if args.base_weights is not None: | |
# base_weights が指定されている場合は、指定された重みを読み込みマージする | |
for i, weight_path in enumerate(args.base_weights): | |
if args.base_weights_multiplier is None or len(args.base_weights_multiplier) <= i: | |
multiplier = 1.0 | |
else: | |
multiplier = args.base_weights_multiplier[i] | |
accelerator.print(f"merging module: {weight_path} with multiplier {multiplier}") | |
module, weights_sd = network_module.create_network_from_weights( | |
multiplier, weight_path, vae, text_encoder, unet, for_inference=True | |
) | |
module.merge_to(text_encoder, unet, weights_sd, weight_dtype, accelerator.device if args.lowram else "cpu") | |
accelerator.print(f"all weights merged: {', '.join(args.base_weights)}") | |
# 学習を準備する | |
if cache_latents: | |
vae.to(accelerator.device, dtype=vae_dtype) | |
vae.requires_grad_(False) | |
vae.eval() | |
train_dataset_group.new_cache_latents(vae, accelerator) | |
vae.to("cpu") | |
clean_memory_on_device(accelerator.device) | |
accelerator.wait_for_everyone() | |
# 必要ならテキストエンコーダーの出力をキャッシュする: Text Encoderはcpuまたはgpuへ移される | |
# cache text encoder outputs if needed: Text Encoder is moved to cpu or gpu | |
text_encoding_strategy = self.get_text_encoding_strategy(args) | |
strategy_base.TextEncodingStrategy.set_strategy(text_encoding_strategy) | |
text_encoder_outputs_caching_strategy = self.get_text_encoder_outputs_caching_strategy(args) | |
if text_encoder_outputs_caching_strategy is not None: | |
strategy_base.TextEncoderOutputsCachingStrategy.set_strategy(text_encoder_outputs_caching_strategy) | |
self.cache_text_encoder_outputs_if_needed(args, accelerator, unet, vae, text_encoders, train_dataset_group, weight_dtype) | |
# prepare network | |
net_kwargs = {} | |
if args.network_args is not None: | |
for net_arg in args.network_args: | |
key, value = net_arg.split("=") | |
net_kwargs[key] = value | |
# if a new network is added in future, add if ~ then blocks for each network (;'∀') | |
if args.dim_from_weights: | |
network, _ = network_module.create_network_from_weights(1, args.network_weights, vae, text_encoder, unet, **net_kwargs) | |
else: | |
if "dropout" not in net_kwargs: | |
# workaround for LyCORIS (;^ω^) | |
net_kwargs["dropout"] = args.network_dropout | |
network = network_module.create_network( | |
1.0, | |
args.network_dim, | |
args.network_alpha, | |
vae, | |
text_encoder, | |
unet, | |
neuron_dropout=args.network_dropout, | |
**net_kwargs, | |
) | |
if network is None: | |
return | |
network_has_multiplier = hasattr(network, "set_multiplier") | |
if hasattr(network, "prepare_network"): | |
network.prepare_network(args) | |
if args.scale_weight_norms and not hasattr(network, "apply_max_norm_regularization"): | |
logger.warning( | |
"warning: scale_weight_norms is specified but the network does not support it / scale_weight_normsが指定されていますが、ネットワークが対応していません" | |
) | |
args.scale_weight_norms = False | |
self.post_process_network(args, accelerator, network, text_encoders, unet) | |
# apply network to unet and text_encoder | |
train_unet = not args.network_train_text_encoder_only | |
train_text_encoder = self.is_train_text_encoder(args) | |
network.apply_to(text_encoder, unet, train_text_encoder, train_unet) | |
if args.network_weights is not None: | |
# FIXME consider alpha of weights: this assumes that the alpha is not changed | |
info = network.load_weights(args.network_weights) | |
accelerator.print(f"load network weights from {args.network_weights}: {info}") | |
if args.gradient_checkpointing: | |
if args.cpu_offload_checkpointing: | |
unet.enable_gradient_checkpointing(cpu_offload=True) | |
else: | |
unet.enable_gradient_checkpointing() | |
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders)): | |
if flag: | |
if t_enc.supports_gradient_checkpointing: | |
t_enc.gradient_checkpointing_enable() | |
del t_enc | |
network.enable_gradient_checkpointing() # may have no effect | |
# 学習に必要なクラスを準備する | |
accelerator.print("prepare optimizer, data loader etc.") | |
# make backward compatibility for text_encoder_lr | |
support_multiple_lrs = hasattr(network, "prepare_optimizer_params_with_multiple_te_lrs") | |
if support_multiple_lrs: | |
text_encoder_lr = args.text_encoder_lr | |
else: | |
# toml backward compatibility | |
if args.text_encoder_lr is None or isinstance(args.text_encoder_lr, float) or isinstance(args.text_encoder_lr, int): | |
text_encoder_lr = args.text_encoder_lr | |
else: | |
text_encoder_lr = None if len(args.text_encoder_lr) == 0 else args.text_encoder_lr[0] | |
try: | |
if support_multiple_lrs: | |
results = network.prepare_optimizer_params_with_multiple_te_lrs(text_encoder_lr, args.unet_lr, args.learning_rate) | |
else: | |
results = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr, args.learning_rate) | |
if type(results) is tuple: | |
trainable_params = results[0] | |
lr_descriptions = results[1] | |
else: | |
trainable_params = results | |
lr_descriptions = None | |
except TypeError as e: | |
trainable_params = network.prepare_optimizer_params(text_encoder_lr, args.unet_lr) | |
lr_descriptions = None | |
# if len(trainable_params) == 0: | |
# accelerator.print("no trainable parameters found / 学習可能なパラメータが見つかりませんでした") | |
# for params in trainable_params: | |
# for k, v in params.items(): | |
# if type(v) == float: | |
# pass | |
# else: | |
# v = len(v) | |
# accelerator.print(f"trainable_params: {k} = {v}") | |
optimizer_name, optimizer_args, optimizer = train_util.get_optimizer(args, trainable_params) | |
optimizer_train_fn, optimizer_eval_fn = train_util.get_optimizer_train_eval_fn(optimizer, args) | |
# prepare dataloader | |
# strategies are set here because they cannot be referenced in another process. Copy them with the dataset | |
# some strategies can be None | |
train_dataset_group.set_current_strategies() | |
# DataLoaderのプロセス数:0 は persistent_workers が使えないので注意 | |
n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset_group, | |
batch_size=1, | |
shuffle=True, | |
collate_fn=collator, | |
num_workers=n_workers, | |
persistent_workers=args.persistent_data_loader_workers, | |
) | |
# 学習ステップ数を計算する | |
if args.max_train_epochs is not None: | |
args.max_train_steps = args.max_train_epochs * math.ceil( | |
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps | |
) | |
accelerator.print( | |
f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}" | |
) | |
# データセット側にも学習ステップを送信 | |
train_dataset_group.set_max_train_steps(args.max_train_steps) | |
# lr schedulerを用意する | |
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) | |
# 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする | |
if args.full_fp16: | |
assert ( | |
args.mixed_precision == "fp16" | |
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。" | |
accelerator.print("enable full fp16 training.") | |
network.to(weight_dtype) | |
elif args.full_bf16: | |
assert ( | |
args.mixed_precision == "bf16" | |
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。" | |
accelerator.print("enable full bf16 training.") | |
network.to(weight_dtype) | |
unet_weight_dtype = te_weight_dtype = weight_dtype | |
# Experimental Feature: Put base model into fp8 to save vram | |
if args.fp8_base or args.fp8_base_unet: | |
assert torch.__version__ >= "2.1.0", "fp8_base requires torch>=2.1.0 / fp8を使う場合はtorch>=2.1.0が必要です。" | |
assert ( | |
args.mixed_precision != "no" | |
), "fp8_base requires mixed precision='fp16' or 'bf16' / fp8を使う場合はmixed_precision='fp16'または'bf16'が必要です。" | |
accelerator.print("enable fp8 training for U-Net.") | |
unet_weight_dtype = torch.float8_e4m3fn | |
if not args.fp8_base_unet: | |
accelerator.print("enable fp8 training for Text Encoder.") | |
te_weight_dtype = weight_dtype if args.fp8_base_unet else torch.float8_e4m3fn | |
# unet.to(accelerator.device) # this makes faster `to(dtype)` below, but consumes 23 GB VRAM | |
# unet.to(dtype=unet_weight_dtype) # without moving to gpu, this takes a lot of time and main memory | |
logger.info(f"set U-Net weight dtype to {unet_weight_dtype}, device to {accelerator.device}") | |
unet.to(accelerator.device, dtype=unet_weight_dtype) # this seems to be safer than above | |
unet.requires_grad_(False) | |
unet.to(dtype=unet_weight_dtype) | |
for i, t_enc in enumerate(text_encoders): | |
t_enc.requires_grad_(False) | |
# in case of cpu, dtype is already set to fp32 because cpu does not support fp8/fp16/bf16 | |
if t_enc.device.type != "cpu": | |
t_enc.to(dtype=te_weight_dtype) | |
# nn.Embedding not support FP8 | |
if te_weight_dtype != weight_dtype: | |
self.prepare_text_encoder_fp8(i, t_enc, te_weight_dtype, weight_dtype) | |
# acceleratorがなんかよろしくやってくれるらしい / accelerator will do something good | |
if args.deepspeed: | |
flags = self.get_text_encoders_train_flags(args, text_encoders) | |
ds_model = deepspeed_utils.prepare_deepspeed_model( | |
args, | |
unet=unet if train_unet else None, | |
text_encoder1=text_encoders[0] if flags[0] else None, | |
text_encoder2=(text_encoders[1] if flags[1] else None) if len(text_encoders) > 1 else None, | |
network=network, | |
) | |
ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
ds_model, optimizer, train_dataloader, lr_scheduler | |
) | |
training_model = ds_model | |
else: | |
if train_unet: | |
unet = accelerator.prepare(unet) | |
else: | |
unet.to(accelerator.device, dtype=unet_weight_dtype) # move to device because unet is not prepared by accelerator | |
if train_text_encoder: | |
text_encoders = [ | |
(accelerator.prepare(t_enc) if flag else t_enc) | |
for t_enc, flag in zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders)) | |
] | |
if len(text_encoders) > 1: | |
text_encoder = text_encoders | |
else: | |
text_encoder = text_encoders[0] | |
else: | |
pass # if text_encoder is not trained, no need to prepare. and device and dtype are already set | |
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
network, optimizer, train_dataloader, lr_scheduler | |
) | |
training_model = network | |
if args.gradient_checkpointing: | |
# according to TI example in Diffusers, train is required | |
unet.train() | |
for i, (t_enc, frag) in enumerate(zip(text_encoders, self.get_text_encoders_train_flags(args, text_encoders))): | |
t_enc.train() | |
# set top parameter requires_grad = True for gradient checkpointing works | |
if frag: | |
self.prepare_text_encoder_grad_ckpt_workaround(i, t_enc) | |
else: | |
unet.eval() | |
for t_enc in text_encoders: | |
t_enc.eval() | |
del t_enc | |
accelerator.unwrap_model(network).prepare_grad_etc(text_encoder, unet) | |
if not cache_latents: # キャッシュしない場合はVAEを使うのでVAEを準備する | |
vae.requires_grad_(False) | |
vae.eval() | |
vae.to(accelerator.device, dtype=vae_dtype) | |
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする | |
if args.full_fp16: | |
train_util.patch_accelerator_for_fp16_training(accelerator) | |
# before resuming make hook for saving/loading to save/load the network weights only | |
def save_model_hook(models, weights, output_dir): | |
# pop weights of other models than network to save only network weights | |
# only main process or deepspeed https://github.com/huggingface/diffusers/issues/2606 | |
if accelerator.is_main_process or args.deepspeed: | |
remove_indices = [] | |
for i, model in enumerate(models): | |
if not isinstance(model, type(accelerator.unwrap_model(network))): | |
remove_indices.append(i) | |
for i in reversed(remove_indices): | |
if len(weights) > i: | |
weights.pop(i) | |
# print(f"save model hook: {len(weights)} weights will be saved") | |
# save current ecpoch and step | |
train_state_file = os.path.join(output_dir, "train_state.json") | |
# +1 is needed because the state is saved before current_step is set from global_step | |
logger.info(f"save train state to {train_state_file} at epoch {current_epoch.value} step {current_step.value+1}") | |
with open(train_state_file, "w", encoding="utf-8") as f: | |
json.dump({"current_epoch": current_epoch.value, "current_step": current_step.value + 1}, f) | |
steps_from_state = None | |
def load_model_hook(models, input_dir): | |
# remove models except network | |
remove_indices = [] | |
for i, model in enumerate(models): | |
if not isinstance(model, type(accelerator.unwrap_model(network))): | |
remove_indices.append(i) | |
for i in reversed(remove_indices): | |
models.pop(i) | |
# print(f"load model hook: {len(models)} models will be loaded") | |
# load current epoch and step to | |
nonlocal steps_from_state | |
train_state_file = os.path.join(input_dir, "train_state.json") | |
if os.path.exists(train_state_file): | |
with open(train_state_file, "r", encoding="utf-8") as f: | |
data = json.load(f) | |
steps_from_state = data["current_step"] | |
logger.info(f"load train state from {train_state_file}: {data}") | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# resumeする | |
train_util.resume_from_local_or_hf_if_specified(accelerator, args) | |
# epoch数を計算する | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0): | |
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1 | |
# 学習する | |
# TODO: find a way to handle total batch size when there are multiple datasets | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
accelerator.print("running training / 学習開始") | |
accelerator.print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}") | |
accelerator.print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}") | |
accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}") | |
accelerator.print(f" num epochs / epoch数: {num_train_epochs}") | |
accelerator.print( | |
f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}" | |
) | |
# accelerator.print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}") | |
accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}") | |
accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}") | |
# TODO refactor metadata creation and move to util | |
metadata = { | |
"ss_session_id": session_id, # random integer indicating which group of epochs the model came from | |
"ss_training_started_at": training_started_at, # unix timestamp | |
"ss_output_name": args.output_name, | |
"ss_learning_rate": args.learning_rate, | |
"ss_text_encoder_lr": text_encoder_lr, | |
"ss_unet_lr": args.unet_lr, | |
"ss_num_train_images": train_dataset_group.num_train_images, | |
"ss_num_reg_images": train_dataset_group.num_reg_images, | |
"ss_num_batches_per_epoch": len(train_dataloader), | |
"ss_num_epochs": num_train_epochs, | |
"ss_gradient_checkpointing": args.gradient_checkpointing, | |
"ss_gradient_accumulation_steps": args.gradient_accumulation_steps, | |
"ss_max_train_steps": args.max_train_steps, | |
"ss_lr_warmup_steps": args.lr_warmup_steps, | |
"ss_lr_scheduler": args.lr_scheduler, | |
"ss_network_module": args.network_module, | |
"ss_network_dim": args.network_dim, # None means default because another network than LoRA may have another default dim | |
"ss_network_alpha": args.network_alpha, # some networks may not have alpha | |
"ss_network_dropout": args.network_dropout, # some networks may not have dropout | |
"ss_mixed_precision": args.mixed_precision, | |
"ss_full_fp16": bool(args.full_fp16), | |
"ss_v2": bool(args.v2), | |
"ss_base_model_version": model_version, | |
"ss_clip_skip": args.clip_skip, | |
"ss_max_token_length": args.max_token_length, | |
"ss_cache_latents": bool(args.cache_latents), | |
"ss_seed": args.seed, | |
"ss_lowram": args.lowram, | |
"ss_noise_offset": args.noise_offset, | |
"ss_multires_noise_iterations": args.multires_noise_iterations, | |
"ss_multires_noise_discount": args.multires_noise_discount, | |
"ss_adaptive_noise_scale": args.adaptive_noise_scale, | |
"ss_zero_terminal_snr": args.zero_terminal_snr, | |
"ss_training_comment": args.training_comment, # will not be updated after training | |
"ss_sd_scripts_commit_hash": train_util.get_git_revision_hash(), | |
"ss_optimizer": optimizer_name + (f"({optimizer_args})" if len(optimizer_args) > 0 else ""), | |
"ss_max_grad_norm": args.max_grad_norm, | |
"ss_caption_dropout_rate": args.caption_dropout_rate, | |
"ss_caption_dropout_every_n_epochs": args.caption_dropout_every_n_epochs, | |
"ss_caption_tag_dropout_rate": args.caption_tag_dropout_rate, | |
"ss_face_crop_aug_range": args.face_crop_aug_range, | |
"ss_prior_loss_weight": args.prior_loss_weight, | |
"ss_min_snr_gamma": args.min_snr_gamma, | |
"ss_scale_weight_norms": args.scale_weight_norms, | |
"ss_ip_noise_gamma": args.ip_noise_gamma, | |
"ss_debiased_estimation": bool(args.debiased_estimation_loss), | |
"ss_noise_offset_random_strength": args.noise_offset_random_strength, | |
"ss_ip_noise_gamma_random_strength": args.ip_noise_gamma_random_strength, | |
"ss_loss_type": args.loss_type, | |
"ss_huber_schedule": args.huber_schedule, | |
"ss_huber_c": args.huber_c, | |
"ss_fp8_base": bool(args.fp8_base), | |
"ss_fp8_base_unet": bool(args.fp8_base_unet), | |
} | |
self.update_metadata(metadata, args) # architecture specific metadata | |
if use_user_config: | |
# save metadata of multiple datasets | |
# NOTE: pack "ss_datasets" value as json one time | |
# or should also pack nested collections as json? | |
datasets_metadata = [] | |
tag_frequency = {} # merge tag frequency for metadata editor | |
dataset_dirs_info = {} # merge subset dirs for metadata editor | |
for dataset in train_dataset_group.datasets: | |
is_dreambooth_dataset = isinstance(dataset, DreamBoothDataset) | |
dataset_metadata = { | |
"is_dreambooth": is_dreambooth_dataset, | |
"batch_size_per_device": dataset.batch_size, | |
"num_train_images": dataset.num_train_images, # includes repeating | |
"num_reg_images": dataset.num_reg_images, | |
"resolution": (dataset.width, dataset.height), | |
"enable_bucket": bool(dataset.enable_bucket), | |
"min_bucket_reso": dataset.min_bucket_reso, | |
"max_bucket_reso": dataset.max_bucket_reso, | |
"tag_frequency": dataset.tag_frequency, | |
"bucket_info": dataset.bucket_info, | |
} | |
subsets_metadata = [] | |
for subset in dataset.subsets: | |
subset_metadata = { | |
"img_count": subset.img_count, | |
"num_repeats": subset.num_repeats, | |
"color_aug": bool(subset.color_aug), | |
"flip_aug": bool(subset.flip_aug), | |
"random_crop": bool(subset.random_crop), | |
"shuffle_caption": bool(subset.shuffle_caption), | |
"keep_tokens": subset.keep_tokens, | |
"keep_tokens_separator": subset.keep_tokens_separator, | |
"secondary_separator": subset.secondary_separator, | |
"enable_wildcard": bool(subset.enable_wildcard), | |
"caption_prefix": subset.caption_prefix, | |
"caption_suffix": subset.caption_suffix, | |
} | |
image_dir_or_metadata_file = None | |
if subset.image_dir: | |
image_dir = os.path.basename(subset.image_dir) | |
subset_metadata["image_dir"] = image_dir | |
image_dir_or_metadata_file = image_dir | |
if is_dreambooth_dataset: | |
subset_metadata["class_tokens"] = subset.class_tokens | |
subset_metadata["is_reg"] = subset.is_reg | |
if subset.is_reg: | |
image_dir_or_metadata_file = None # not merging reg dataset | |
else: | |
metadata_file = os.path.basename(subset.metadata_file) | |
subset_metadata["metadata_file"] = metadata_file | |
image_dir_or_metadata_file = metadata_file # may overwrite | |
subsets_metadata.append(subset_metadata) | |
# merge dataset dir: not reg subset only | |
# TODO update additional-network extension to show detailed dataset config from metadata | |
if image_dir_or_metadata_file is not None: | |
# datasets may have a certain dir multiple times | |
v = image_dir_or_metadata_file | |
i = 2 | |
while v in dataset_dirs_info: | |
v = image_dir_or_metadata_file + f" ({i})" | |
i += 1 | |
image_dir_or_metadata_file = v | |
dataset_dirs_info[image_dir_or_metadata_file] = { | |
"n_repeats": subset.num_repeats, | |
"img_count": subset.img_count, | |
} | |
dataset_metadata["subsets"] = subsets_metadata | |
datasets_metadata.append(dataset_metadata) | |
# merge tag frequency: | |
for ds_dir_name, ds_freq_for_dir in dataset.tag_frequency.items(): | |
# あるディレクトリが複数のdatasetで使用されている場合、一度だけ数える | |
# もともと繰り返し回数を指定しているので、キャプション内でのタグの出現回数と、それが学習で何度使われるかは一致しない | |
# なので、ここで複数datasetの回数を合算してもあまり意味はない | |
if ds_dir_name in tag_frequency: | |
continue | |
tag_frequency[ds_dir_name] = ds_freq_for_dir | |
metadata["ss_datasets"] = json.dumps(datasets_metadata) | |
metadata["ss_tag_frequency"] = json.dumps(tag_frequency) | |
metadata["ss_dataset_dirs"] = json.dumps(dataset_dirs_info) | |
else: | |
# conserving backward compatibility when using train_dataset_dir and reg_dataset_dir | |
assert ( | |
len(train_dataset_group.datasets) == 1 | |
), f"There should be a single dataset but {len(train_dataset_group.datasets)} found. This seems to be a bug. / データセットは1個だけ存在するはずですが、実際には{len(train_dataset_group.datasets)}個でした。プログラムのバグかもしれません。" | |
dataset = train_dataset_group.datasets[0] | |
dataset_dirs_info = {} | |
reg_dataset_dirs_info = {} | |
if use_dreambooth_method: | |
for subset in dataset.subsets: | |
info = reg_dataset_dirs_info if subset.is_reg else dataset_dirs_info | |
info[os.path.basename(subset.image_dir)] = {"n_repeats": subset.num_repeats, "img_count": subset.img_count} | |
else: | |
for subset in dataset.subsets: | |
dataset_dirs_info[os.path.basename(subset.metadata_file)] = { | |
"n_repeats": subset.num_repeats, | |
"img_count": subset.img_count, | |
} | |
metadata.update( | |
{ | |
"ss_batch_size_per_device": args.train_batch_size, | |
"ss_total_batch_size": total_batch_size, | |
"ss_resolution": args.resolution, | |
"ss_color_aug": bool(args.color_aug), | |
"ss_flip_aug": bool(args.flip_aug), | |
"ss_random_crop": bool(args.random_crop), | |
"ss_shuffle_caption": bool(args.shuffle_caption), | |
"ss_enable_bucket": bool(dataset.enable_bucket), | |
"ss_bucket_no_upscale": bool(dataset.bucket_no_upscale), | |
"ss_min_bucket_reso": dataset.min_bucket_reso, | |
"ss_max_bucket_reso": dataset.max_bucket_reso, | |
"ss_keep_tokens": args.keep_tokens, | |
"ss_dataset_dirs": json.dumps(dataset_dirs_info), | |
"ss_reg_dataset_dirs": json.dumps(reg_dataset_dirs_info), | |
"ss_tag_frequency": json.dumps(dataset.tag_frequency), | |
"ss_bucket_info": json.dumps(dataset.bucket_info), | |
} | |
) | |
# add extra args | |
if args.network_args: | |
metadata["ss_network_args"] = json.dumps(net_kwargs) | |
# model name and hash | |
if args.pretrained_model_name_or_path is not None: | |
sd_model_name = args.pretrained_model_name_or_path | |
if os.path.exists(sd_model_name): | |
metadata["ss_sd_model_hash"] = train_util.model_hash(sd_model_name) | |
metadata["ss_new_sd_model_hash"] = train_util.calculate_sha256(sd_model_name) | |
sd_model_name = os.path.basename(sd_model_name) | |
metadata["ss_sd_model_name"] = sd_model_name | |
if args.vae is not None: | |
vae_name = args.vae | |
if os.path.exists(vae_name): | |
metadata["ss_vae_hash"] = train_util.model_hash(vae_name) | |
metadata["ss_new_vae_hash"] = train_util.calculate_sha256(vae_name) | |
vae_name = os.path.basename(vae_name) | |
metadata["ss_vae_name"] = vae_name | |
metadata = {k: str(v) for k, v in metadata.items()} | |
# make minimum metadata for filtering | |
minimum_metadata = {} | |
for key in train_util.SS_METADATA_MINIMUM_KEYS: | |
if key in metadata: | |
minimum_metadata[key] = metadata[key] | |
# calculate steps to skip when resuming or starting from a specific step | |
initial_step = 0 | |
if args.initial_epoch is not None or args.initial_step is not None: | |
# if initial_epoch or initial_step is specified, steps_from_state is ignored even when resuming | |
if steps_from_state is not None: | |
logger.warning( | |
"steps from the state is ignored because initial_step is specified / initial_stepが指定されているため、stateからのステップ数は無視されます" | |
) | |
if args.initial_step is not None: | |
initial_step = args.initial_step | |
else: | |
# num steps per epoch is calculated by num_processes and gradient_accumulation_steps | |
initial_step = (args.initial_epoch - 1) * math.ceil( | |
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps | |
) | |
else: | |
# if initial_epoch and initial_step are not specified, steps_from_state is used when resuming | |
if steps_from_state is not None: | |
initial_step = steps_from_state | |
steps_from_state = None | |
if initial_step > 0: | |
assert ( | |
args.max_train_steps > initial_step | |
), f"max_train_steps should be greater than initial step / max_train_stepsは初期ステップより大きい必要があります: {args.max_train_steps} vs {initial_step}" | |
progress_bar = tqdm( | |
range(args.max_train_steps - initial_step), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps" | |
) | |
epoch_to_start = 0 | |
if initial_step > 0: | |
if args.skip_until_initial_step: | |
# if skip_until_initial_step is specified, load data and discard it to ensure the same data is used | |
if not args.resume: | |
logger.info( | |
f"initial_step is specified but not resuming. lr scheduler will be started from the beginning / initial_stepが指定されていますがresumeしていないため、lr schedulerは最初から始まります" | |
) | |
logger.info(f"skipping {initial_step} steps / {initial_step}ステップをスキップします") | |
initial_step *= args.gradient_accumulation_steps | |
# set epoch to start to make initial_step less than len(train_dataloader) | |
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
else: | |
# if not, only epoch no is skipped for informative purpose | |
epoch_to_start = initial_step // math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
initial_step = 0 # do not skip | |
global_step = 0 | |
noise_scheduler = self.get_noise_scheduler(args, accelerator.device) | |
if accelerator.is_main_process: | |
init_kwargs = {} | |
if args.wandb_run_name: | |
init_kwargs["wandb"] = {"name": args.wandb_run_name} | |
if args.log_tracker_config is not None: | |
init_kwargs = toml.load(args.log_tracker_config) | |
accelerator.init_trackers( | |
"network_train" if args.log_tracker_name is None else args.log_tracker_name, | |
config=train_util.get_sanitized_config_or_none(args), | |
init_kwargs=init_kwargs, | |
) | |
loss_recorder = train_util.LossRecorder() | |
del train_dataset_group | |
# callback for step start | |
if hasattr(accelerator.unwrap_model(network), "on_step_start"): | |
on_step_start_for_network = accelerator.unwrap_model(network).on_step_start | |
else: | |
on_step_start_for_network = lambda *args, **kwargs: None | |
# function for saving/removing | |
def save_model(ckpt_name, unwrapped_nw, steps, epoch_no, force_sync_upload=False): | |
os.makedirs(args.output_dir, exist_ok=True) | |
ckpt_file = os.path.join(args.output_dir, ckpt_name) | |
accelerator.print(f"\nsaving checkpoint: {ckpt_file}") | |
metadata["ss_training_finished_at"] = str(time.time()) | |
metadata["ss_steps"] = str(steps) | |
metadata["ss_epoch"] = str(epoch_no) | |
metadata_to_save = minimum_metadata if args.no_metadata else metadata | |
sai_metadata = self.get_sai_model_spec(args) | |
metadata_to_save.update(sai_metadata) | |
unwrapped_nw.save_weights(ckpt_file, save_dtype, metadata_to_save) | |
if args.huggingface_repo_id is not None: | |
huggingface_util.upload(args, ckpt_file, "/" + ckpt_name, force_sync_upload=force_sync_upload) | |
def remove_model(old_ckpt_name): | |
old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name) | |
if os.path.exists(old_ckpt_file): | |
accelerator.print(f"removing old checkpoint: {old_ckpt_file}") | |
os.remove(old_ckpt_file) | |
# if text_encoder is not needed for training, delete it to save memory. | |
# TODO this can be automated after SDXL sample prompt cache is implemented | |
if self.is_text_encoder_not_needed_for_training(args): | |
logger.info("text_encoder is not needed for training. deleting to save memory.") | |
for t_enc in text_encoders: | |
del t_enc | |
text_encoders = [] | |
text_encoder = None | |
# For --sample_at_first | |
optimizer_eval_fn() | |
self.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizers, text_encoder, unet) | |
optimizer_train_fn() | |
if len(accelerator.trackers) > 0: | |
# log empty object to commit the sample images to wandb | |
accelerator.log({}, step=0) | |
# training loop | |
if initial_step > 0: # only if skip_until_initial_step is specified | |
for skip_epoch in range(epoch_to_start): # skip epochs | |
logger.info(f"skipping epoch {skip_epoch+1} because initial_step (multiplied) is {initial_step}") | |
initial_step -= len(train_dataloader) | |
global_step = initial_step | |
# log device and dtype for each model | |
logger.info(f"unet dtype: {unet_weight_dtype}, device: {unet.device}") | |
for i, t_enc in enumerate(text_encoders): | |
params_itr = t_enc.parameters() | |
params_itr.__next__() # skip the first parameter | |
params_itr.__next__() # skip the second parameter. because CLIP first two parameters are embeddings | |
param_3rd = params_itr.__next__() | |
logger.info(f"text_encoder [{i}] dtype: {param_3rd.dtype}, device: {t_enc.device}") | |
clean_memory_on_device(accelerator.device) | |
for epoch in range(epoch_to_start, num_train_epochs): | |
accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}") | |
current_epoch.value = epoch + 1 | |
metadata["ss_epoch"] = str(epoch + 1) | |
accelerator.unwrap_model(network).on_epoch_start(text_encoder, unet) | |
skipped_dataloader = None | |
if initial_step > 0: | |
skipped_dataloader = accelerator.skip_first_batches(train_dataloader, initial_step - 1) | |
initial_step = 1 | |
for step, batch in enumerate(skipped_dataloader or train_dataloader): | |
current_step.value = global_step | |
if initial_step > 0: | |
initial_step -= 1 | |
continue | |
with accelerator.accumulate(training_model): | |
on_step_start_for_network(text_encoder, unet) | |
# temporary, for batch processing | |
self.on_step_start(args, accelerator, network, text_encoders, unet, batch, weight_dtype) | |
if "latents" in batch and batch["latents"] is not None: | |
latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype) | |
else: | |
with torch.no_grad(): | |
# latentに変換 | |
latents = self.encode_images_to_latents(args, accelerator, vae, batch["images"].to(vae_dtype)) | |
latents = latents.to(dtype=weight_dtype) | |
# NaNが含まれていれば警告を表示し0に置き換える | |
if torch.any(torch.isnan(latents)): | |
accelerator.print("NaN found in latents, replacing with zeros") | |
latents = torch.nan_to_num(latents, 0, out=latents) | |
latents = self.shift_scale_latents(args, latents) | |
# get multiplier for each sample | |
if network_has_multiplier: | |
multipliers = batch["network_multipliers"] | |
# if all multipliers are same, use single multiplier | |
if torch.all(multipliers == multipliers[0]): | |
multipliers = multipliers[0].item() | |
else: | |
raise NotImplementedError("multipliers for each sample is not supported yet") | |
# print(f"set multiplier: {multipliers}") | |
accelerator.unwrap_model(network).set_multiplier(multipliers) | |
text_encoder_conds = [] | |
text_encoder_outputs_list = batch.get("text_encoder_outputs_list", None) | |
if text_encoder_outputs_list is not None: | |
text_encoder_conds = text_encoder_outputs_list # List of text encoder outputs | |
if len(text_encoder_conds) == 0 or text_encoder_conds[0] is None or train_text_encoder: | |
# TODO this does not work if 'some text_encoders are trained' and 'some are not and not cached' | |
with torch.set_grad_enabled(train_text_encoder), accelerator.autocast(): | |
# Get the text embedding for conditioning | |
if args.weighted_captions: | |
input_ids_list, weights_list = tokenize_strategy.tokenize_with_weights(batch["captions"]) | |
encoded_text_encoder_conds = text_encoding_strategy.encode_tokens_with_weights( | |
tokenize_strategy, | |
self.get_models_for_text_encoding(args, accelerator, text_encoders), | |
input_ids_list, | |
weights_list, | |
) | |
else: | |
input_ids = [ids.to(accelerator.device) for ids in batch["input_ids_list"]] | |
encoded_text_encoder_conds = text_encoding_strategy.encode_tokens( | |
tokenize_strategy, | |
self.get_models_for_text_encoding(args, accelerator, text_encoders), | |
input_ids, | |
) | |
if args.full_fp16: | |
encoded_text_encoder_conds = [c.to(weight_dtype) for c in encoded_text_encoder_conds] | |
# if text_encoder_conds is not cached, use encoded_text_encoder_conds | |
if len(text_encoder_conds) == 0: | |
text_encoder_conds = encoded_text_encoder_conds | |
else: | |
# if encoded_text_encoder_conds is not None, update cached text_encoder_conds | |
for i in range(len(encoded_text_encoder_conds)): | |
if encoded_text_encoder_conds[i] is not None: | |
text_encoder_conds[i] = encoded_text_encoder_conds[i] | |
# sample noise, call unet, get target | |
noise_pred, target, timesteps, huber_c, weighting = self.get_noise_pred_and_target( | |
args, | |
accelerator, | |
noise_scheduler, | |
latents, | |
batch, | |
text_encoder_conds, | |
unet, | |
network, | |
weight_dtype, | |
train_unet, | |
) | |
loss = train_util.conditional_loss( | |
noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c | |
) | |
if weighting is not None: | |
loss = loss * weighting | |
if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None): | |
loss = apply_masked_loss(loss, batch) | |
loss = loss.mean([1, 2, 3]) | |
loss_weights = batch["loss_weights"] # 各sampleごとのweight | |
loss = loss * loss_weights | |
# min snr gamma, scale v pred loss like noise pred, v pred like loss, debiased estimation etc. | |
loss = self.post_process_loss(loss, args, timesteps, noise_scheduler) | |
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
self.all_reduce_network(accelerator, network) # sync DDP grad manually | |
if args.max_grad_norm != 0.0: | |
params_to_clip = accelerator.unwrap_model(network).get_trainable_params() | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=True) | |
if args.scale_weight_norms: | |
keys_scaled, mean_norm, maximum_norm = accelerator.unwrap_model(network).apply_max_norm_regularization( | |
args.scale_weight_norms, accelerator.device | |
) | |
max_mean_logs = {"Keys Scaled": keys_scaled, "Average key norm": mean_norm} | |
else: | |
keys_scaled, mean_norm, maximum_norm = None, None, None | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
progress_bar.update(1) | |
global_step += 1 | |
optimizer_eval_fn() | |
self.sample_images( | |
accelerator, args, None, global_step, accelerator.device, vae, tokenizers, text_encoder, unet | |
) | |
# 指定ステップごとにモデルを保存 | |
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0: | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, global_step) | |
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch) | |
if args.save_state: | |
train_util.save_and_remove_state_stepwise(args, accelerator, global_step) | |
remove_step_no = train_util.get_remove_step_no(args, global_step) | |
if remove_step_no is not None: | |
remove_ckpt_name = train_util.get_step_ckpt_name(args, "." + args.save_model_as, remove_step_no) | |
remove_model(remove_ckpt_name) | |
optimizer_train_fn() | |
current_loss = loss.detach().item() | |
loss_recorder.add(epoch=epoch, step=step, loss=current_loss) | |
avr_loss: float = loss_recorder.moving_average | |
logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if args.scale_weight_norms: | |
progress_bar.set_postfix(**{**max_mean_logs, **logs}) | |
if len(accelerator.trackers) > 0: | |
logs = self.generate_step_logs( | |
args, current_loss, avr_loss, lr_scheduler, lr_descriptions, keys_scaled, mean_norm, maximum_norm | |
) | |
accelerator.log(logs, step=global_step) | |
if global_step >= args.max_train_steps: | |
break | |
if len(accelerator.trackers) > 0: | |
logs = {"loss/epoch": loss_recorder.moving_average} | |
accelerator.log(logs, step=epoch + 1) | |
accelerator.wait_for_everyone() | |
# 指定エポックごとにモデルを保存 | |
optimizer_eval_fn() | |
if args.save_every_n_epochs is not None: | |
saving = (epoch + 1) % args.save_every_n_epochs == 0 and (epoch + 1) < num_train_epochs | |
if is_main_process and saving: | |
ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, epoch + 1) | |
save_model(ckpt_name, accelerator.unwrap_model(network), global_step, epoch + 1) | |
remove_epoch_no = train_util.get_remove_epoch_no(args, epoch + 1) | |
if remove_epoch_no is not None: | |
remove_ckpt_name = train_util.get_epoch_ckpt_name(args, "." + args.save_model_as, remove_epoch_no) | |
remove_model(remove_ckpt_name) | |
if args.save_state: | |
train_util.save_and_remove_state_on_epoch_end(args, accelerator, epoch + 1) | |
self.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizers, text_encoder, unet) | |
optimizer_train_fn() | |
# end of epoch | |
# metadata["ss_epoch"] = str(num_train_epochs) | |
metadata["ss_training_finished_at"] = str(time.time()) | |
if is_main_process: | |
network = accelerator.unwrap_model(network) | |
accelerator.end_training() | |
optimizer_eval_fn() | |
if is_main_process and (args.save_state or args.save_state_on_train_end): | |
train_util.save_state_on_train_end(args, accelerator) | |
if is_main_process: | |
ckpt_name = train_util.get_last_ckpt_name(args, "." + args.save_model_as) | |
save_model(ckpt_name, network, global_step, num_train_epochs, force_sync_upload=True) | |
logger.info("model saved.") | |
def setup_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser() | |
add_logging_arguments(parser) | |
train_util.add_sd_models_arguments(parser) | |
train_util.add_dataset_arguments(parser, True, True, True) | |
train_util.add_training_arguments(parser, True) | |
train_util.add_masked_loss_arguments(parser) | |
deepspeed_utils.add_deepspeed_arguments(parser) | |
train_util.add_optimizer_arguments(parser) | |
config_util.add_config_arguments(parser) | |
custom_train_functions.add_custom_train_arguments(parser) | |
parser.add_argument( | |
"--cpu_offload_checkpointing", | |
action="store_true", | |
help="[EXPERIMENTAL] enable offloading of tensors to CPU during checkpointing for U-Net or DiT, if supported" | |
" / 勾配チェックポイント時にテンソルをCPUにオフロードする(U-NetまたはDiTのみ、サポートされている場合)", | |
) | |
parser.add_argument( | |
"--no_metadata", action="store_true", help="do not save metadata in output model / メタデータを出力先モデルに保存しない" | |
) | |
parser.add_argument( | |
"--save_model_as", | |
type=str, | |
default="safetensors", | |
choices=[None, "ckpt", "pt", "safetensors"], | |
help="format to save the model (default is .safetensors) / モデル保存時の形式(デフォルトはsafetensors)", | |
) | |
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率") | |
parser.add_argument( | |
"--text_encoder_lr", | |
type=float, | |
default=None, | |
nargs="*", | |
help="learning rate for Text Encoder, can be multiple / Text Encoderの学習率、複数指定可能", | |
) | |
parser.add_argument( | |
"--fp8_base_unet", | |
action="store_true", | |
help="use fp8 for U-Net (or DiT), Text Encoder is fp16 or bf16" | |
" / U-Net(またはDiT)にfp8を使用する。Text Encoderはfp16またはbf16", | |
) | |
parser.add_argument( | |
"--network_weights", type=str, default=None, help="pretrained weights for network / 学習するネットワークの初期重み" | |
) | |
parser.add_argument( | |
"--network_module", type=str, default=None, help="network module to train / 学習対象のネットワークのモジュール" | |
) | |
parser.add_argument( | |
"--network_dim", | |
type=int, | |
default=None, | |
help="network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)", | |
) | |
parser.add_argument( | |
"--network_alpha", | |
type=float, | |
default=1, | |
help="alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)", | |
) | |
parser.add_argument( | |
"--network_dropout", | |
type=float, | |
default=None, | |
help="Drops neurons out of training every step (0 or None is default behavior (no dropout), 1 would drop all neurons) / 訓練時に毎ステップでニューロンをdropする(0またはNoneはdropoutなし、1は全ニューロンをdropout)", | |
) | |
parser.add_argument( | |
"--network_args", | |
type=str, | |
default=None, | |
nargs="*", | |
help="additional arguments for network (key=value) / ネットワークへの追加の引数", | |
) | |
parser.add_argument( | |
"--network_train_unet_only", action="store_true", help="only training U-Net part / U-Net関連部分のみ学習する" | |
) | |
parser.add_argument( | |
"--network_train_text_encoder_only", | |
action="store_true", | |
help="only training Text Encoder part / Text Encoder関連部分のみ学習する", | |
) | |
parser.add_argument( | |
"--training_comment", | |
type=str, | |
default=None, | |
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列", | |
) | |
parser.add_argument( | |
"--dim_from_weights", | |
action="store_true", | |
help="automatically determine dim (rank) from network_weights / dim (rank)をnetwork_weightsで指定した重みから自動で決定する", | |
) | |
parser.add_argument( | |
"--scale_weight_norms", | |
type=float, | |
default=None, | |
help="Scale the weight of each key pair to help prevent overtraing via exploding gradients. (1 is a good starting point) / 重みの値をスケーリングして勾配爆発を防ぐ(1が初期値としては適当)", | |
) | |
parser.add_argument( | |
"--base_weights", | |
type=str, | |
default=None, | |
nargs="*", | |
help="network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みファイル", | |
) | |
parser.add_argument( | |
"--base_weights_multiplier", | |
type=float, | |
default=None, | |
nargs="*", | |
help="multiplier for network weights to merge into the model before training / 学習前にあらかじめモデルにマージするnetworkの重みの倍率", | |
) | |
parser.add_argument( | |
"--no_half_vae", | |
action="store_true", | |
help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う", | |
) | |
parser.add_argument( | |
"--skip_until_initial_step", | |
action="store_true", | |
help="skip training until initial_step is reached / initial_stepに到達するまで学習をスキップする", | |
) | |
parser.add_argument( | |
"--initial_epoch", | |
type=int, | |
default=None, | |
help="initial epoch number, 1 means first epoch (same as not specifying). NOTE: initial_epoch/step doesn't affect to lr scheduler. Which means lr scheduler will start from 0 without `--resume`." | |
+ " / 初期エポック数、1で最初のエポック(未指定時と同じ)。注意:initial_epoch/stepはlr schedulerに影響しないため、`--resume`しない場合はlr schedulerは0から始まる", | |
) | |
parser.add_argument( | |
"--initial_step", | |
type=int, | |
default=None, | |
help="initial step number including all epochs, 0 means first step (same as not specifying). overwrites initial_epoch." | |
+ " / 初期ステップ数、全エポックを含むステップ数、0で最初のステップ(未指定時と同じ)。initial_epochを上書きする", | |
) | |
# parser.add_argument("--loraplus_lr_ratio", default=None, type=float, help="LoRA+ learning rate ratio") | |
# parser.add_argument("--loraplus_unet_lr_ratio", default=None, type=float, help="LoRA+ UNet learning rate ratio") | |
# parser.add_argument("--loraplus_text_encoder_lr_ratio", default=None, type=float, help="LoRA+ text encoder learning rate ratio") | |
return parser | |
if __name__ == "__main__": | |
parser = setup_parser() | |
args = parser.parse_args() | |
train_util.verify_command_line_training_args(args) | |
args = train_util.read_config_from_file(args, parser) | |
trainer = NetworkTrainer() | |
trainer.train(args) | |