from dataclasses import replace import json import os from typing import List, Optional, Tuple, Union import einops import torch from safetensors.torch import load_file from safetensors import safe_open from accelerate import init_empty_weights from transformers import CLIPTextModel, CLIPConfig, T5EncoderModel, T5Config from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) from library import flux_models from library.utils import load_safetensors MODEL_VERSION_FLUX_V1 = "flux1" MODEL_NAME_DEV = "dev" MODEL_NAME_SCHNELL = "schnell" def analyze_checkpoint_state(ckpt_path: str) -> Tuple[bool, bool, Tuple[int, int], List[str]]: """ チェックポイントの状態を分析し、DiffusersかBFLか、devかschnellか、ブロック数を計算して返す。 Args: ckpt_path (str): チェックポイントファイルまたはディレクトリのパス。 Returns: Tuple[bool, bool, Tuple[int, int], List[str]]: - bool: Diffusersかどうかを示すフラグ。 - bool: Schnellかどうかを示すフラグ。 - Tuple[int, int]: ダブルブロックとシングルブロックの数。 - List[str]: チェックポイントに含まれるキーのリスト。 """ # check the state dict: Diffusers or BFL, dev or schnell, number of blocks logger.info(f"Checking the state dict: Diffusers or BFL, dev or schnell") if os.path.isdir(ckpt_path): # if ckpt_path is a directory, it is Diffusers ckpt_path = os.path.join(ckpt_path, "transformer", "diffusion_pytorch_model-00001-of-00003.safetensors") if "00001-of-00003" in ckpt_path: ckpt_paths = [ckpt_path.replace("00001-of-00003", f"0000{i}-of-00003") for i in range(1, 4)] else: ckpt_paths = [ckpt_path] keys = [] for ckpt_path in ckpt_paths: with safe_open(ckpt_path, framework="pt") as f: keys.extend(f.keys()) # if the key has annoying prefix, remove it if keys[0].startswith("model.diffusion_model."): keys = [key.replace("model.diffusion_model.", "") for key in keys] is_diffusers = "transformer_blocks.0.attn.add_k_proj.bias" in keys is_schnell = not ("guidance_in.in_layer.bias" in keys or "time_text_embed.guidance_embedder.linear_1.bias" in keys) # check number of double and single blocks if not is_diffusers: max_double_block_index = max( [int(key.split(".")[1]) for key in keys if key.startswith("double_blocks.") and key.endswith(".img_attn.proj.bias")] ) max_single_block_index = max( [int(key.split(".")[1]) for key in keys if key.startswith("single_blocks.") and key.endswith(".modulation.lin.bias")] ) else: max_double_block_index = max( [ int(key.split(".")[1]) for key in keys if key.startswith("transformer_blocks.") and key.endswith(".attn.add_k_proj.bias") ] ) max_single_block_index = max( [ int(key.split(".")[1]) for key in keys if key.startswith("single_transformer_blocks.") and key.endswith(".attn.to_k.bias") ] ) num_double_blocks = max_double_block_index + 1 num_single_blocks = max_single_block_index + 1 return is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths def load_flow_model( ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False ) -> Tuple[bool, flux_models.Flux]: is_diffusers, is_schnell, (num_double_blocks, num_single_blocks), ckpt_paths = analyze_checkpoint_state(ckpt_path) name = MODEL_NAME_DEV if not is_schnell else MODEL_NAME_SCHNELL # build model logger.info(f"Building Flux model {name} from {'Diffusers' if is_diffusers else 'BFL'} checkpoint") with torch.device("meta"): params = flux_models.configs[name].params # set the number of blocks if params.depth != num_double_blocks: logger.info(f"Setting the number of double blocks from {params.depth} to {num_double_blocks}") params = replace(params, depth=num_double_blocks) if params.depth_single_blocks != num_single_blocks: logger.info(f"Setting the number of single blocks from {params.depth_single_blocks} to {num_single_blocks}") params = replace(params, depth_single_blocks=num_single_blocks) model = flux_models.Flux(params) if dtype is not None: model = model.to(dtype) # load_sft doesn't support torch.device logger.info(f"Loading state dict from {ckpt_path}") sd = {} for ckpt_path in ckpt_paths: sd.update(load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype)) # convert Diffusers to BFL if is_diffusers: logger.info("Converting Diffusers to BFL") sd = convert_diffusers_sd_to_bfl(sd, num_double_blocks, num_single_blocks) logger.info("Converted Diffusers to BFL") # if the key has annoying prefix, remove it for key in list(sd.keys()): new_key = key.replace("model.diffusion_model.", "") if new_key == key: break # the model doesn't have annoying prefix sd[new_key] = sd.pop(key) info = model.load_state_dict(sd, strict=False, assign=True) logger.info(f"Loaded Flux: {info}") return is_schnell, model def load_ae( ckpt_path: str, dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False ) -> flux_models.AutoEncoder: logger.info("Building AutoEncoder") with torch.device("meta"): # dev and schnell have the same AE params ae = flux_models.AutoEncoder(flux_models.configs[MODEL_NAME_DEV].ae_params).to(dtype) logger.info(f"Loading state dict from {ckpt_path}") sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) info = ae.load_state_dict(sd, strict=False, assign=True) logger.info(f"Loaded AE: {info}") return ae def load_clip_l( ckpt_path: Optional[str], dtype: torch.dtype, device: Union[str, torch.device], disable_mmap: bool = False, state_dict: Optional[dict] = None, ) -> CLIPTextModel: logger.info("Building CLIP-L") CLIPL_CONFIG = { "_name_or_path": "clip-vit-large-patch14/", "architectures": ["CLIPModel"], "initializer_factor": 1.0, "logit_scale_init_value": 2.6592, "model_type": "clip", "projection_dim": 768, # "text_config": { "_name_or_path": "", "add_cross_attention": False, "architectures": None, "attention_dropout": 0.0, "bad_words_ids": None, "bos_token_id": 0, "chunk_size_feed_forward": 0, "cross_attention_hidden_size": None, "decoder_start_token_id": None, "diversity_penalty": 0.0, "do_sample": False, "dropout": 0.0, "early_stopping": False, "encoder_no_repeat_ngram_size": 0, "eos_token_id": 2, "finetuning_task": None, "forced_bos_token_id": None, "forced_eos_token_id": None, "hidden_act": "quick_gelu", "hidden_size": 768, "id2label": {"0": "LABEL_0", "1": "LABEL_1"}, "initializer_factor": 1.0, "initializer_range": 0.02, "intermediate_size": 3072, "is_decoder": False, "is_encoder_decoder": False, "label2id": {"LABEL_0": 0, "LABEL_1": 1}, "layer_norm_eps": 1e-05, "length_penalty": 1.0, "max_length": 20, "max_position_embeddings": 77, "min_length": 0, "model_type": "clip_text_model", "no_repeat_ngram_size": 0, "num_attention_heads": 12, "num_beam_groups": 1, "num_beams": 1, "num_hidden_layers": 12, "num_return_sequences": 1, "output_attentions": False, "output_hidden_states": False, "output_scores": False, "pad_token_id": 1, "prefix": None, "problem_type": None, "projection_dim": 768, "pruned_heads": {}, "remove_invalid_values": False, "repetition_penalty": 1.0, "return_dict": True, "return_dict_in_generate": False, "sep_token_id": None, "task_specific_params": None, "temperature": 1.0, "tie_encoder_decoder": False, "tie_word_embeddings": True, "tokenizer_class": None, "top_k": 50, "top_p": 1.0, "torch_dtype": None, "torchscript": False, "transformers_version": "4.16.0.dev0", "use_bfloat16": False, "vocab_size": 49408, "hidden_act": "gelu", "hidden_size": 1280, "intermediate_size": 5120, "num_attention_heads": 20, "num_hidden_layers": 32, # }, # "text_config_dict": { "hidden_size": 768, "intermediate_size": 3072, "num_attention_heads": 12, "num_hidden_layers": 12, "projection_dim": 768, # }, # "torch_dtype": "float32", # "transformers_version": None, } config = CLIPConfig(**CLIPL_CONFIG) with init_empty_weights(): clip = CLIPTextModel._from_config(config) if state_dict is not None: sd = state_dict else: logger.info(f"Loading state dict from {ckpt_path}") sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) info = clip.load_state_dict(sd, strict=False, assign=True) logger.info(f"Loaded CLIP-L: {info}") return clip def load_t5xxl( ckpt_path: str, dtype: Optional[torch.dtype], device: Union[str, torch.device], disable_mmap: bool = False, state_dict: Optional[dict] = None, ) -> T5EncoderModel: T5_CONFIG_JSON = """ { "architectures": [ "T5EncoderModel" ], "classifier_dropout": 0.0, "d_ff": 10240, "d_kv": 64, "d_model": 4096, "decoder_start_token_id": 0, "dense_act_fn": "gelu_new", "dropout_rate": 0.1, "eos_token_id": 1, "feed_forward_proj": "gated-gelu", "initializer_factor": 1.0, "is_encoder_decoder": true, "is_gated_act": true, "layer_norm_epsilon": 1e-06, "model_type": "t5", "num_decoder_layers": 24, "num_heads": 64, "num_layers": 24, "output_past": true, "pad_token_id": 0, "relative_attention_max_distance": 128, "relative_attention_num_buckets": 32, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.41.2", "use_cache": true, "vocab_size": 32128 } """ config = json.loads(T5_CONFIG_JSON) config = T5Config(**config) with init_empty_weights(): t5xxl = T5EncoderModel._from_config(config) if state_dict is not None: sd = state_dict else: logger.info(f"Loading state dict from {ckpt_path}") sd = load_safetensors(ckpt_path, device=str(device), disable_mmap=disable_mmap, dtype=dtype) info = t5xxl.load_state_dict(sd, strict=False, assign=True) logger.info(f"Loaded T5xxl: {info}") return t5xxl def get_t5xxl_actual_dtype(t5xxl: T5EncoderModel) -> torch.dtype: # nn.Embedding is the first layer, but it could be casted to bfloat16 or float32 return t5xxl.encoder.block[0].layer[0].SelfAttention.q.weight.dtype def prepare_img_ids(batch_size: int, packed_latent_height: int, packed_latent_width: int): img_ids = torch.zeros(packed_latent_height, packed_latent_width, 3) img_ids[..., 1] = img_ids[..., 1] + torch.arange(packed_latent_height)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(packed_latent_width)[None, :] img_ids = einops.repeat(img_ids, "h w c -> b (h w) c", b=batch_size) return img_ids def unpack_latents(x: torch.Tensor, packed_latent_height: int, packed_latent_width: int) -> torch.Tensor: """ x: [b (h w) (c ph pw)] -> [b c (h ph) (w pw)], ph=2, pw=2 """ x = einops.rearrange(x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=packed_latent_height, w=packed_latent_width, ph=2, pw=2) return x def pack_latents(x: torch.Tensor) -> torch.Tensor: """ x: [b c (h ph) (w pw)] -> [b (h w) (c ph pw)], ph=2, pw=2 """ x = einops.rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) return x # region Diffusers NUM_DOUBLE_BLOCKS = 19 NUM_SINGLE_BLOCKS = 38 BFL_TO_DIFFUSERS_MAP = { "time_in.in_layer.weight": ["time_text_embed.timestep_embedder.linear_1.weight"], "time_in.in_layer.bias": ["time_text_embed.timestep_embedder.linear_1.bias"], "time_in.out_layer.weight": ["time_text_embed.timestep_embedder.linear_2.weight"], "time_in.out_layer.bias": ["time_text_embed.timestep_embedder.linear_2.bias"], "vector_in.in_layer.weight": ["time_text_embed.text_embedder.linear_1.weight"], "vector_in.in_layer.bias": ["time_text_embed.text_embedder.linear_1.bias"], "vector_in.out_layer.weight": ["time_text_embed.text_embedder.linear_2.weight"], "vector_in.out_layer.bias": ["time_text_embed.text_embedder.linear_2.bias"], "guidance_in.in_layer.weight": ["time_text_embed.guidance_embedder.linear_1.weight"], "guidance_in.in_layer.bias": ["time_text_embed.guidance_embedder.linear_1.bias"], "guidance_in.out_layer.weight": ["time_text_embed.guidance_embedder.linear_2.weight"], "guidance_in.out_layer.bias": ["time_text_embed.guidance_embedder.linear_2.bias"], "txt_in.weight": ["context_embedder.weight"], "txt_in.bias": ["context_embedder.bias"], "img_in.weight": ["x_embedder.weight"], "img_in.bias": ["x_embedder.bias"], "double_blocks.().img_mod.lin.weight": ["norm1.linear.weight"], "double_blocks.().img_mod.lin.bias": ["norm1.linear.bias"], "double_blocks.().txt_mod.lin.weight": ["norm1_context.linear.weight"], "double_blocks.().txt_mod.lin.bias": ["norm1_context.linear.bias"], "double_blocks.().img_attn.qkv.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight"], "double_blocks.().img_attn.qkv.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias"], "double_blocks.().txt_attn.qkv.weight": ["attn.add_q_proj.weight", "attn.add_k_proj.weight", "attn.add_v_proj.weight"], "double_blocks.().txt_attn.qkv.bias": ["attn.add_q_proj.bias", "attn.add_k_proj.bias", "attn.add_v_proj.bias"], "double_blocks.().img_attn.norm.query_norm.scale": ["attn.norm_q.weight"], "double_blocks.().img_attn.norm.key_norm.scale": ["attn.norm_k.weight"], "double_blocks.().txt_attn.norm.query_norm.scale": ["attn.norm_added_q.weight"], "double_blocks.().txt_attn.norm.key_norm.scale": ["attn.norm_added_k.weight"], "double_blocks.().img_mlp.0.weight": ["ff.net.0.proj.weight"], "double_blocks.().img_mlp.0.bias": ["ff.net.0.proj.bias"], "double_blocks.().img_mlp.2.weight": ["ff.net.2.weight"], "double_blocks.().img_mlp.2.bias": ["ff.net.2.bias"], "double_blocks.().txt_mlp.0.weight": ["ff_context.net.0.proj.weight"], "double_blocks.().txt_mlp.0.bias": ["ff_context.net.0.proj.bias"], "double_blocks.().txt_mlp.2.weight": ["ff_context.net.2.weight"], "double_blocks.().txt_mlp.2.bias": ["ff_context.net.2.bias"], "double_blocks.().img_attn.proj.weight": ["attn.to_out.0.weight"], "double_blocks.().img_attn.proj.bias": ["attn.to_out.0.bias"], "double_blocks.().txt_attn.proj.weight": ["attn.to_add_out.weight"], "double_blocks.().txt_attn.proj.bias": ["attn.to_add_out.bias"], "single_blocks.().modulation.lin.weight": ["norm.linear.weight"], "single_blocks.().modulation.lin.bias": ["norm.linear.bias"], "single_blocks.().linear1.weight": ["attn.to_q.weight", "attn.to_k.weight", "attn.to_v.weight", "proj_mlp.weight"], "single_blocks.().linear1.bias": ["attn.to_q.bias", "attn.to_k.bias", "attn.to_v.bias", "proj_mlp.bias"], "single_blocks.().linear2.weight": ["proj_out.weight"], "single_blocks.().norm.query_norm.scale": ["attn.norm_q.weight"], "single_blocks.().norm.key_norm.scale": ["attn.norm_k.weight"], "single_blocks.().linear2.weight": ["proj_out.weight"], "single_blocks.().linear2.bias": ["proj_out.bias"], "final_layer.linear.weight": ["proj_out.weight"], "final_layer.linear.bias": ["proj_out.bias"], "final_layer.adaLN_modulation.1.weight": ["norm_out.linear.weight"], "final_layer.adaLN_modulation.1.bias": ["norm_out.linear.bias"], } def make_diffusers_to_bfl_map(num_double_blocks: int, num_single_blocks: int) -> dict[str, tuple[int, str]]: # make reverse map from diffusers map diffusers_to_bfl_map = {} # key: diffusers_key, value: (index, bfl_key) for b in range(num_double_blocks): for key, weights in BFL_TO_DIFFUSERS_MAP.items(): if key.startswith("double_blocks."): block_prefix = f"transformer_blocks.{b}." for i, weight in enumerate(weights): diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}")) for b in range(num_single_blocks): for key, weights in BFL_TO_DIFFUSERS_MAP.items(): if key.startswith("single_blocks."): block_prefix = f"single_transformer_blocks.{b}." for i, weight in enumerate(weights): diffusers_to_bfl_map[f"{block_prefix}{weight}"] = (i, key.replace("()", f"{b}")) for key, weights in BFL_TO_DIFFUSERS_MAP.items(): if not (key.startswith("double_blocks.") or key.startswith("single_blocks.")): for i, weight in enumerate(weights): diffusers_to_bfl_map[weight] = (i, key) return diffusers_to_bfl_map def convert_diffusers_sd_to_bfl( diffusers_sd: dict[str, torch.Tensor], num_double_blocks: int = NUM_DOUBLE_BLOCKS, num_single_blocks: int = NUM_SINGLE_BLOCKS ) -> dict[str, torch.Tensor]: diffusers_to_bfl_map = make_diffusers_to_bfl_map(num_double_blocks, num_single_blocks) # iterate over three safetensors files to reduce memory usage flux_sd = {} for diffusers_key, tensor in diffusers_sd.items(): if diffusers_key in diffusers_to_bfl_map: index, bfl_key = diffusers_to_bfl_map[diffusers_key] if bfl_key not in flux_sd: flux_sd[bfl_key] = [] flux_sd[bfl_key].append((index, tensor)) else: logger.error(f"Error: Key not found in diffusers_to_bfl_map: {diffusers_key}") raise KeyError(f"Key not found in diffusers_to_bfl_map: {diffusers_key}") # concat tensors if multiple tensors are mapped to a single key, sort by index for key, values in flux_sd.items(): if len(values) == 1: flux_sd[key] = values[0][1] else: flux_sd[key] = torch.cat([value[1] for value in sorted(values, key=lambda x: x[0])]) # special case for final_layer.adaLN_modulation.1.weight and final_layer.adaLN_modulation.1.bias def swap_scale_shift(weight): shift, scale = weight.chunk(2, dim=0) new_weight = torch.cat([scale, shift], dim=0) return new_weight if "final_layer.adaLN_modulation.1.weight" in flux_sd: flux_sd["final_layer.adaLN_modulation.1.weight"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.weight"]) if "final_layer.adaLN_modulation.1.bias" in flux_sd: flux_sd["final_layer.adaLN_modulation.1.bias"] = swap_scale_shift(flux_sd["final_layer.adaLN_modulation.1.bias"]) return flux_sd # endregion