# some parts are modified from Diffusers library (Apache License 2.0) import math from types import SimpleNamespace from typing import Any, Optional import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from einops import rearrange from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) from library import sdxl_original_unet from library.sdxl_model_util import convert_sdxl_unet_state_dict_to_diffusers, convert_diffusers_unet_state_dict_to_sdxl class ControlNetConditioningEmbedding(nn.Module): def __init__(self): super().__init__() dims = [16, 32, 96, 256] self.conv_in = nn.Conv2d(3, dims[0], kernel_size=3, padding=1) self.blocks = nn.ModuleList([]) for i in range(len(dims) - 1): channel_in = dims[i] channel_out = dims[i + 1] self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) self.conv_out = nn.Conv2d(dims[-1], 320, kernel_size=3, padding=1) nn.init.zeros_(self.conv_out.weight) # zero module weight nn.init.zeros_(self.conv_out.bias) # zero module bias def forward(self, x): x = self.conv_in(x) x = F.silu(x) for block in self.blocks: x = block(x) x = F.silu(x) x = self.conv_out(x) return x class SdxlControlNet(sdxl_original_unet.SdxlUNet2DConditionModel): def __init__(self, multiplier: Optional[float] = None, **kwargs): super().__init__(**kwargs) self.multiplier = multiplier # remove unet layers self.output_blocks = nn.ModuleList([]) del self.out self.controlnet_cond_embedding = ControlNetConditioningEmbedding() dims = [320, 320, 320, 320, 640, 640, 640, 1280, 1280] self.controlnet_down_blocks = nn.ModuleList([]) for dim in dims: self.controlnet_down_blocks.append(nn.Conv2d(dim, dim, kernel_size=1)) nn.init.zeros_(self.controlnet_down_blocks[-1].weight) # zero module weight nn.init.zeros_(self.controlnet_down_blocks[-1].bias) # zero module bias self.controlnet_mid_block = nn.Conv2d(1280, 1280, kernel_size=1) nn.init.zeros_(self.controlnet_mid_block.weight) # zero module weight nn.init.zeros_(self.controlnet_mid_block.bias) # zero module bias def init_from_unet(self, unet: sdxl_original_unet.SdxlUNet2DConditionModel): unet_sd = unet.state_dict() unet_sd = {k: v for k, v in unet_sd.items() if not k.startswith("out")} sd = super().state_dict() sd.update(unet_sd) info = super().load_state_dict(sd, strict=True, assign=True) return info def load_state_dict(self, state_dict: dict, strict: bool = True, assign: bool = True) -> Any: # convert state_dict to SAI format unet_sd = {} for k in list(state_dict.keys()): if not k.startswith("controlnet_"): unet_sd[k] = state_dict.pop(k) unet_sd = convert_diffusers_unet_state_dict_to_sdxl(unet_sd) state_dict.update(unet_sd) super().load_state_dict(state_dict, strict=strict, assign=assign) def state_dict(self, destination=None, prefix="", keep_vars=False): # convert state_dict to Diffusers format state_dict = super().state_dict(destination, prefix, keep_vars) control_net_sd = {} for k in list(state_dict.keys()): if k.startswith("controlnet_"): control_net_sd[k] = state_dict.pop(k) state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict) state_dict.update(control_net_sd) return state_dict def forward( self, x: torch.Tensor, timesteps: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None, cond_image: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: # broadcast timesteps to batch dimension timesteps = timesteps.expand(x.shape[0]) t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0) t_emb = t_emb.to(x.dtype) emb = self.time_embed(t_emb) assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" emb = emb + self.label_emb(y) def call_module(module, h, emb, context): x = h for layer in module: if isinstance(layer, sdxl_original_unet.ResnetBlock2D): x = layer(x, emb) elif isinstance(layer, sdxl_original_unet.Transformer2DModel): x = layer(x, context) else: x = layer(x) return x h = x multiplier = self.multiplier if self.multiplier is not None else 1.0 hs = [] for i, module in enumerate(self.input_blocks): h = call_module(module, h, emb, context) if i == 0: h = self.controlnet_cond_embedding(cond_image) + h hs.append(self.controlnet_down_blocks[i](h) * multiplier) h = call_module(self.middle_block, h, emb, context) h = self.controlnet_mid_block(h) * multiplier return hs, h class SdxlControlledUNet(sdxl_original_unet.SdxlUNet2DConditionModel): """ This class is for training purpose only. """ def __init__(self, **kwargs): super().__init__(**kwargs) def forward(self, x, timesteps=None, context=None, y=None, input_resi_add=None, mid_add=None, **kwargs): # broadcast timesteps to batch dimension timesteps = timesteps.expand(x.shape[0]) hs = [] t_emb = sdxl_original_unet.get_timestep_embedding(timesteps, self.model_channels, downscale_freq_shift=0) t_emb = t_emb.to(x.dtype) emb = self.time_embed(t_emb) assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" emb = emb + self.label_emb(y) def call_module(module, h, emb, context): x = h for layer in module: if isinstance(layer, sdxl_original_unet.ResnetBlock2D): x = layer(x, emb) elif isinstance(layer, sdxl_original_unet.Transformer2DModel): x = layer(x, context) else: x = layer(x) return x h = x for module in self.input_blocks: h = call_module(module, h, emb, context) hs.append(h) h = call_module(self.middle_block, h, emb, context) h = h + mid_add for module in self.output_blocks: resi = hs.pop() + input_resi_add.pop() h = torch.cat([h, resi], dim=1) h = call_module(module, h, emb, context) h = h.type(x.dtype) h = call_module(self.out, h, emb, context) return h if __name__ == "__main__": import time logger.info("create unet") unet = SdxlControlledUNet() unet.to("cuda", torch.bfloat16) unet.set_use_sdpa(True) unet.set_gradient_checkpointing(True) unet.train() logger.info("create control_net") control_net = SdxlControlNet() control_net.to("cuda") control_net.set_use_sdpa(True) control_net.set_gradient_checkpointing(True) control_net.train() logger.info("Initialize control_net from unet") control_net.init_from_unet(unet) unet.requires_grad_(False) control_net.requires_grad_(True) # 使用メモリ量確認用の疑似学習ループ logger.info("preparing optimizer") # optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working import bitsandbytes optimizer = bitsandbytes.adam.Adam8bit(control_net.parameters(), lr=1e-3) # not working # optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2 # optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2 # import transformers # optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2 scaler = torch.cuda.amp.GradScaler(enabled=True) logger.info("start training") steps = 10 batch_size = 1 for step in range(steps): logger.info(f"step {step}") if step == 1: time_start = time.perf_counter() x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024 t = torch.randint(low=0, high=1000, size=(batch_size,), device="cuda") txt = torch.randn(batch_size, 77, 2048).cuda() vector = torch.randn(batch_size, sdxl_original_unet.ADM_IN_CHANNELS).cuda() cond_img = torch.rand(batch_size, 3, 1024, 1024).cuda() with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16): input_resi_add, mid_add = control_net(x, t, txt, vector, cond_img) output = unet(x, t, txt, vector, input_resi_add, mid_add) target = torch.randn_like(output) loss = torch.nn.functional.mse_loss(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) time_end = time.perf_counter() logger.info(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps") logger.info("finish training") sd = control_net.state_dict() from safetensors.torch import save_file save_file(sd, r"E:\Work\SD\Tmp\sdxl\ctrl\control_net.safetensors")