# convert key mapping and data format from some LoRA format to another """ Original LoRA format: Based on Black Forest Labs, QKV and MLP are unified into one module alpha is scalar for each LoRA module 0 to 18 lora_unet_double_blocks_0_img_attn_proj.alpha torch.Size([]) lora_unet_double_blocks_0_img_attn_proj.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_img_attn_proj.lora_up.weight torch.Size([3072, 4]) lora_unet_double_blocks_0_img_attn_qkv.alpha torch.Size([]) lora_unet_double_blocks_0_img_attn_qkv.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_img_attn_qkv.lora_up.weight torch.Size([9216, 4]) lora_unet_double_blocks_0_img_mlp_0.alpha torch.Size([]) lora_unet_double_blocks_0_img_mlp_0.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_img_mlp_0.lora_up.weight torch.Size([12288, 4]) lora_unet_double_blocks_0_img_mlp_2.alpha torch.Size([]) lora_unet_double_blocks_0_img_mlp_2.lora_down.weight torch.Size([4, 12288]) lora_unet_double_blocks_0_img_mlp_2.lora_up.weight torch.Size([3072, 4]) lora_unet_double_blocks_0_img_mod_lin.alpha torch.Size([]) lora_unet_double_blocks_0_img_mod_lin.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_img_mod_lin.lora_up.weight torch.Size([18432, 4]) lora_unet_double_blocks_0_txt_attn_proj.alpha torch.Size([]) lora_unet_double_blocks_0_txt_attn_proj.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_txt_attn_proj.lora_up.weight torch.Size([3072, 4]) lora_unet_double_blocks_0_txt_attn_qkv.alpha torch.Size([]) lora_unet_double_blocks_0_txt_attn_qkv.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_txt_attn_qkv.lora_up.weight torch.Size([9216, 4]) lora_unet_double_blocks_0_txt_mlp_0.alpha torch.Size([]) lora_unet_double_blocks_0_txt_mlp_0.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_txt_mlp_0.lora_up.weight torch.Size([12288, 4]) lora_unet_double_blocks_0_txt_mlp_2.alpha torch.Size([]) lora_unet_double_blocks_0_txt_mlp_2.lora_down.weight torch.Size([4, 12288]) lora_unet_double_blocks_0_txt_mlp_2.lora_up.weight torch.Size([3072, 4]) lora_unet_double_blocks_0_txt_mod_lin.alpha torch.Size([]) lora_unet_double_blocks_0_txt_mod_lin.lora_down.weight torch.Size([4, 3072]) lora_unet_double_blocks_0_txt_mod_lin.lora_up.weight torch.Size([18432, 4]) 0 to 37 lora_unet_single_blocks_0_linear1.alpha torch.Size([]) lora_unet_single_blocks_0_linear1.lora_down.weight torch.Size([4, 3072]) lora_unet_single_blocks_0_linear1.lora_up.weight torch.Size([21504, 4]) lora_unet_single_blocks_0_linear2.alpha torch.Size([]) lora_unet_single_blocks_0_linear2.lora_down.weight torch.Size([4, 15360]) lora_unet_single_blocks_0_linear2.lora_up.weight torch.Size([3072, 4]) lora_unet_single_blocks_0_modulation_lin.alpha torch.Size([]) lora_unet_single_blocks_0_modulation_lin.lora_down.weight torch.Size([4, 3072]) lora_unet_single_blocks_0_modulation_lin.lora_up.weight torch.Size([9216, 4]) """ """ ai-toolkit: Based on Diffusers, QKV and MLP are separated into 3 modules. A is down, B is up. No alpha for each LoRA module. 0 to 18 transformer.transformer_blocks.0.attn.add_k_proj.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.add_k_proj.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.add_q_proj.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.add_q_proj.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.add_v_proj.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.add_v_proj.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.to_add_out.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.to_add_out.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.to_out.0.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.to_out.0.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.ff.net.0.proj.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.ff.net.0.proj.lora_B.weight torch.Size([12288, 16]) transformer.transformer_blocks.0.ff.net.2.lora_A.weight torch.Size([16, 12288]) transformer.transformer_blocks.0.ff.net.2.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.ff_context.net.0.proj.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.ff_context.net.0.proj.lora_B.weight torch.Size([12288, 16]) transformer.transformer_blocks.0.ff_context.net.2.lora_A.weight torch.Size([16, 12288]) transformer.transformer_blocks.0.ff_context.net.2.lora_B.weight torch.Size([3072, 16]) transformer.transformer_blocks.0.norm1.linear.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.norm1.linear.lora_B.weight torch.Size([18432, 16]) transformer.transformer_blocks.0.norm1_context.linear.lora_A.weight torch.Size([16, 3072]) transformer.transformer_blocks.0.norm1_context.linear.lora_B.weight torch.Size([18432, 16]) 0 to 37 transformer.single_transformer_blocks.0.attn.to_k.lora_A.weight torch.Size([16, 3072]) transformer.single_transformer_blocks.0.attn.to_k.lora_B.weight torch.Size([3072, 16]) transformer.single_transformer_blocks.0.attn.to_q.lora_A.weight torch.Size([16, 3072]) transformer.single_transformer_blocks.0.attn.to_q.lora_B.weight torch.Size([3072, 16]) transformer.single_transformer_blocks.0.attn.to_v.lora_A.weight torch.Size([16, 3072]) transformer.single_transformer_blocks.0.attn.to_v.lora_B.weight torch.Size([3072, 16]) transformer.single_transformer_blocks.0.norm.linear.lora_A.weight torch.Size([16, 3072]) transformer.single_transformer_blocks.0.norm.linear.lora_B.weight torch.Size([9216, 16]) transformer.single_transformer_blocks.0.proj_mlp.lora_A.weight torch.Size([16, 3072]) transformer.single_transformer_blocks.0.proj_mlp.lora_B.weight torch.Size([12288, 16]) transformer.single_transformer_blocks.0.proj_out.lora_A.weight torch.Size([16, 15360]) transformer.single_transformer_blocks.0.proj_out.lora_B.weight torch.Size([3072, 16]) """ """ xlabs: Unknown format. 0 to 18 double_blocks.0.processor.proj_lora1.down.weight torch.Size([16, 3072]) double_blocks.0.processor.proj_lora1.up.weight torch.Size([3072, 16]) double_blocks.0.processor.proj_lora2.down.weight torch.Size([16, 3072]) double_blocks.0.processor.proj_lora2.up.weight torch.Size([3072, 16]) double_blocks.0.processor.qkv_lora1.down.weight torch.Size([16, 3072]) double_blocks.0.processor.qkv_lora1.up.weight torch.Size([9216, 16]) double_blocks.0.processor.qkv_lora2.down.weight torch.Size([16, 3072]) double_blocks.0.processor.qkv_lora2.up.weight torch.Size([9216, 16]) """ import argparse from safetensors.torch import save_file from safetensors import safe_open import torch from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) def convert_to_sd_scripts(sds_sd, ait_sd, sds_key, ait_key): ait_down_key = ait_key + ".lora_A.weight" if ait_down_key not in ait_sd: return ait_up_key = ait_key + ".lora_B.weight" down_weight = ait_sd.pop(ait_down_key) sds_sd[sds_key + ".lora_down.weight"] = down_weight sds_sd[sds_key + ".lora_up.weight"] = ait_sd.pop(ait_up_key) rank = down_weight.shape[0] sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(rank, dtype=down_weight.dtype, device=down_weight.device) def convert_to_sd_scripts_cat(sds_sd, ait_sd, sds_key, ait_keys): ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] if ait_down_keys[0] not in ait_sd: return ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] down_weights = [ait_sd.pop(k) for k in ait_down_keys] up_weights = [ait_sd.pop(k) for k in ait_up_keys] # lora_down is concatenated along dim=0, so rank is multiplied by the number of splits rank = down_weights[0].shape[0] num_splits = len(ait_keys) sds_sd[sds_key + ".lora_down.weight"] = torch.cat(down_weights, dim=0) merged_up_weights = torch.zeros( (sum(w.shape[0] for w in up_weights), rank * num_splits), dtype=up_weights[0].dtype, device=up_weights[0].device, ) i = 0 for j, up_weight in enumerate(up_weights): merged_up_weights[i : i + up_weight.shape[0], j * rank : (j + 1) * rank] = up_weight i += up_weight.shape[0] sds_sd[sds_key + ".lora_up.weight"] = merged_up_weights # set alpha to new_rank new_rank = rank * num_splits sds_sd[sds_key + ".alpha"] = torch.scalar_tensor(new_rank, dtype=down_weights[0].dtype, device=down_weights[0].device) def convert_ai_toolkit_to_sd_scripts(ait_sd): sds_sd = {} for i in range(19): convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0" ) convert_to_sd_scripts_cat( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_qkv", [ f"transformer.transformer_blocks.{i}.attn.to_q", f"transformer.transformer_blocks.{i}.attn.to_k", f"transformer.transformer_blocks.{i}.attn.to_v", ], ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out" ) convert_to_sd_scripts_cat( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_qkv", [ f"transformer.transformer_blocks.{i}.attn.add_q_proj", f"transformer.transformer_blocks.{i}.attn.add_k_proj", f"transformer.transformer_blocks.{i}.attn.add_v_proj", ], ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear" ) for i in range(38): convert_to_sd_scripts_cat( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear1", [ f"transformer.single_transformer_blocks.{i}.attn.to_q", f"transformer.single_transformer_blocks.{i}.attn.to_k", f"transformer.single_transformer_blocks.{i}.attn.to_v", f"transformer.single_transformer_blocks.{i}.proj_mlp", ], ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out" ) convert_to_sd_scripts( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear" ) if len(ait_sd) > 0: logger.warning(f"Unsuppored keys for sd-scripts: {ait_sd.keys()}") return sds_sd def convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key): if sds_key + ".lora_down.weight" not in sds_sd: return down_weight = sds_sd.pop(sds_key + ".lora_down.weight") # scale weight by alpha and dim rank = down_weight.shape[0] alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here # print(f"rank: {rank}, alpha: {alpha}, scale: {scale}") # calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2 scale_down = scale scale_up = 1.0 while scale_down * 2 < scale_up: scale_down *= 2 scale_up /= 2 # print(f"scale: {scale}, scale_down: {scale_down}, scale_up: {scale_up}") ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up def convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None): if sds_key + ".lora_down.weight" not in sds_sd: return down_weight = sds_sd.pop(sds_key + ".lora_down.weight") up_weight = sds_sd.pop(sds_key + ".lora_up.weight") sd_lora_rank = down_weight.shape[0] # scale weight by alpha and dim alpha = sds_sd.pop(sds_key + ".alpha") scale = alpha / sd_lora_rank # calculate scale_down and scale_up scale_down = scale scale_up = 1.0 while scale_down * 2 < scale_up: scale_down *= 2 scale_up /= 2 down_weight = down_weight * scale_down up_weight = up_weight * scale_up # calculate dims if not provided num_splits = len(ait_keys) if dims is None: dims = [up_weight.shape[0] // num_splits] * num_splits else: assert sum(dims) == up_weight.shape[0] # check upweight is sparse or not is_sparse = False if sd_lora_rank % num_splits == 0: ait_rank = sd_lora_rank // num_splits is_sparse = True i = 0 for j in range(len(dims)): for k in range(len(dims)): if j == k: continue is_sparse = is_sparse and torch.all(up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0) i += dims[j] if is_sparse: logger.info(f"weight is sparse: {sds_key}") # make ai-toolkit weight ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] if not is_sparse: # down_weight is copied to each split ait_sd.update({k: down_weight for k in ait_down_keys}) # up_weight is split to each split ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) else: # down_weight is chunked to each split ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # up_weight is sparse: only non-zero values are copied to each split i = 0 for j in range(len(dims)): ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous() i += dims[j] def convert_sd_scripts_to_ai_toolkit(sds_sd): ait_sd = {} for i in range(19): convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_out.0" ) convert_to_ai_toolkit_cat( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_attn_qkv", [ f"transformer.transformer_blocks.{i}.attn.to_q", f"transformer.transformer_blocks.{i}.attn.to_k", f"transformer.transformer_blocks.{i}.attn.to_v", ], ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_0", f"transformer.transformer_blocks.{i}.ff.net.0.proj" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mlp_2", f"transformer.transformer_blocks.{i}.ff.net.2" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_img_mod_lin", f"transformer.transformer_blocks.{i}.norm1.linear" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_proj", f"transformer.transformer_blocks.{i}.attn.to_add_out" ) convert_to_ai_toolkit_cat( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_attn_qkv", [ f"transformer.transformer_blocks.{i}.attn.add_q_proj", f"transformer.transformer_blocks.{i}.attn.add_k_proj", f"transformer.transformer_blocks.{i}.attn.add_v_proj", ], ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_0", f"transformer.transformer_blocks.{i}.ff_context.net.0.proj" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mlp_2", f"transformer.transformer_blocks.{i}.ff_context.net.2" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_double_blocks_{i}_txt_mod_lin", f"transformer.transformer_blocks.{i}.norm1_context.linear" ) for i in range(38): convert_to_ai_toolkit_cat( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear1", [ f"transformer.single_transformer_blocks.{i}.attn.to_q", f"transformer.single_transformer_blocks.{i}.attn.to_k", f"transformer.single_transformer_blocks.{i}.attn.to_v", f"transformer.single_transformer_blocks.{i}.proj_mlp", ], dims=[3072, 3072, 3072, 12288], ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_linear2", f"transformer.single_transformer_blocks.{i}.proj_out" ) convert_to_ai_toolkit( sds_sd, ait_sd, f"lora_unet_single_blocks_{i}_modulation_lin", f"transformer.single_transformer_blocks.{i}.norm.linear" ) if len(sds_sd) > 0: logger.warning(f"Unsuppored keys for ai-toolkit: {sds_sd.keys()}") return ait_sd def main(args): # load source safetensors logger.info(f"Loading source file {args.src_path}") state_dict = {} with safe_open(args.src_path, framework="pt") as f: metadata = f.metadata() for k in f.keys(): state_dict[k] = f.get_tensor(k) logger.info(f"Converting {args.src} to {args.dst} format") if args.src == "ai-toolkit" and args.dst == "sd-scripts": state_dict = convert_ai_toolkit_to_sd_scripts(state_dict) elif args.src == "sd-scripts" and args.dst == "ai-toolkit": state_dict = convert_sd_scripts_to_ai_toolkit(state_dict) # eliminate 'shared tensors' for k in list(state_dict.keys()): state_dict[k] = state_dict[k].detach().clone() else: raise NotImplementedError(f"Conversion from {args.src} to {args.dst} is not supported") # save destination safetensors logger.info(f"Saving destination file {args.dst_path}") save_file(state_dict, args.dst_path, metadata=metadata) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Convert LoRA format") parser.add_argument("--src", type=str, default="ai-toolkit", help="source format, ai-toolkit or sd-scripts") parser.add_argument("--dst", type=str, default="sd-scripts", help="destination format, ai-toolkit or sd-scripts") parser.add_argument("--src_path", type=str, default=None, help="source path") parser.add_argument("--dst_path", type=str, default=None, help="destination path") args = parser.parse_args() main(args)