# some codes are copied from: # https://github.com/huawei-noah/KD-NLP/blob/main/DyLoRA/ # Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved. # Changes made to the original code: # 2022.08.20 - Integrate the DyLoRA layer for the LoRA Linear layer # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import math import os import random from typing import Dict, List, Optional, Tuple, Type, Union from diffusers import AutoencoderKL from transformers import CLIPTextModel import torch from torch import nn from library.utils import setup_logging setup_logging() import logging logger = logging.getLogger(__name__) class DyLoRAModule(torch.nn.Module): """ replaces forward method of the original Linear, instead of replacing the original Linear module. """ # NOTE: support dropout in future def __init__(self, lora_name, org_module: torch.nn.Module, multiplier=1.0, lora_dim=4, alpha=1, unit=1): super().__init__() self.lora_name = lora_name self.lora_dim = lora_dim self.unit = unit assert self.lora_dim % self.unit == 0, "rank must be a multiple of unit" if org_module.__class__.__name__ == "Conv2d": in_dim = org_module.in_channels out_dim = org_module.out_channels else: in_dim = org_module.in_features out_dim = org_module.out_features if type(alpha) == torch.Tensor: alpha = alpha.detach().float().numpy() # without casting, bf16 causes error alpha = self.lora_dim if alpha is None or alpha == 0 else alpha self.scale = alpha / self.lora_dim self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える self.is_conv2d = org_module.__class__.__name__ == "Conv2d" self.is_conv2d_3x3 = self.is_conv2d and org_module.kernel_size == (3, 3) if self.is_conv2d and self.is_conv2d_3x3: kernel_size = org_module.kernel_size self.stride = org_module.stride self.padding = org_module.padding self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim, *kernel_size)) for _ in range(self.lora_dim)]) self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1, 1, 1)) for _ in range(self.lora_dim)]) else: self.lora_A = nn.ParameterList([org_module.weight.new_zeros((1, in_dim)) for _ in range(self.lora_dim)]) self.lora_B = nn.ParameterList([org_module.weight.new_zeros((out_dim, 1)) for _ in range(self.lora_dim)]) # same as microsoft's for lora in self.lora_A: torch.nn.init.kaiming_uniform_(lora, a=math.sqrt(5)) for lora in self.lora_B: torch.nn.init.zeros_(lora) self.multiplier = multiplier self.org_module = org_module # remove in applying def apply_to(self): self.org_forward = self.org_module.forward self.org_module.forward = self.forward del self.org_module def forward(self, x): result = self.org_forward(x) # specify the dynamic rank trainable_rank = random.randint(0, self.lora_dim - 1) trainable_rank = trainable_rank - trainable_rank % self.unit # make sure the rank is a multiple of unit # 一部のパラメータを固定して、残りのパラメータを学習する for i in range(0, trainable_rank): self.lora_A[i].requires_grad = False self.lora_B[i].requires_grad = False for i in range(trainable_rank, trainable_rank + self.unit): self.lora_A[i].requires_grad = True self.lora_B[i].requires_grad = True for i in range(trainable_rank + self.unit, self.lora_dim): self.lora_A[i].requires_grad = False self.lora_B[i].requires_grad = False lora_A = torch.cat(tuple(self.lora_A), dim=0) lora_B = torch.cat(tuple(self.lora_B), dim=1) # calculate with lora_A and lora_B if self.is_conv2d_3x3: ab = torch.nn.functional.conv2d(x, lora_A, stride=self.stride, padding=self.padding) ab = torch.nn.functional.conv2d(ab, lora_B) else: ab = x if self.is_conv2d: ab = ab.reshape(ab.size(0), ab.size(1), -1).transpose(1, 2) # (N, C, H, W) -> (N, H*W, C) ab = torch.nn.functional.linear(ab, lora_A) ab = torch.nn.functional.linear(ab, lora_B) if self.is_conv2d: ab = ab.transpose(1, 2).reshape(ab.size(0), -1, *x.size()[2:]) # (N, H*W, C) -> (N, C, H, W) # 最後の項は、低rankをより大きくするためのスケーリング(じゃないかな) result = result + ab * self.scale * math.sqrt(self.lora_dim / (trainable_rank + self.unit)) # NOTE weightに加算してからlinear/conv2dを呼んだほうが速いかも return result def state_dict(self, destination=None, prefix="", keep_vars=False): # state dictを通常のLoRAと同じにする: # nn.ParameterListは `.lora_A.0` みたいな名前になるので、forwardと同様にcatして入れ替える sd = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars) lora_A_weight = torch.cat(tuple(self.lora_A), dim=0) if self.is_conv2d and not self.is_conv2d_3x3: lora_A_weight = lora_A_weight.unsqueeze(-1).unsqueeze(-1) lora_B_weight = torch.cat(tuple(self.lora_B), dim=1) if self.is_conv2d and not self.is_conv2d_3x3: lora_B_weight = lora_B_weight.unsqueeze(-1).unsqueeze(-1) sd[self.lora_name + ".lora_down.weight"] = lora_A_weight if keep_vars else lora_A_weight.detach() sd[self.lora_name + ".lora_up.weight"] = lora_B_weight if keep_vars else lora_B_weight.detach() i = 0 while True: key_a = f"{self.lora_name}.lora_A.{i}" key_b = f"{self.lora_name}.lora_B.{i}" if key_a in sd: sd.pop(key_a) sd.pop(key_b) else: break i += 1 return sd def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): # 通常のLoRAと同じstate dictを読み込めるようにする:この方法はchatGPTに聞いた lora_A_weight = state_dict.pop(self.lora_name + ".lora_down.weight", None) lora_B_weight = state_dict.pop(self.lora_name + ".lora_up.weight", None) if lora_A_weight is None or lora_B_weight is None: if strict: raise KeyError(f"{self.lora_name}.lora_down/up.weight is not found") else: return if self.is_conv2d and not self.is_conv2d_3x3: lora_A_weight = lora_A_weight.squeeze(-1).squeeze(-1) lora_B_weight = lora_B_weight.squeeze(-1).squeeze(-1) state_dict.update( {f"{self.lora_name}.lora_A.{i}": nn.Parameter(lora_A_weight[i].unsqueeze(0)) for i in range(lora_A_weight.size(0))} ) state_dict.update( {f"{self.lora_name}.lora_B.{i}": nn.Parameter(lora_B_weight[:, i].unsqueeze(1)) for i in range(lora_B_weight.size(1))} ) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def create_network( multiplier: float, network_dim: Optional[int], network_alpha: Optional[float], vae: AutoencoderKL, text_encoder: Union[CLIPTextModel, List[CLIPTextModel]], unet, **kwargs, ): if network_dim is None: network_dim = 4 # default if network_alpha is None: network_alpha = 1.0 # extract dim/alpha for conv2d, and block dim conv_dim = kwargs.get("conv_dim", None) conv_alpha = kwargs.get("conv_alpha", None) unit = kwargs.get("unit", None) if conv_dim is not None: conv_dim = int(conv_dim) assert conv_dim == network_dim, "conv_dim must be same as network_dim" if conv_alpha is None: conv_alpha = 1.0 else: conv_alpha = float(conv_alpha) if unit is not None: unit = int(unit) else: unit = 1 network = DyLoRANetwork( text_encoder, unet, multiplier=multiplier, lora_dim=network_dim, alpha=network_alpha, apply_to_conv=conv_dim is not None, unit=unit, varbose=True, ) loraplus_lr_ratio = kwargs.get("loraplus_lr_ratio", None) loraplus_unet_lr_ratio = kwargs.get("loraplus_unet_lr_ratio", None) loraplus_text_encoder_lr_ratio = kwargs.get("loraplus_text_encoder_lr_ratio", None) loraplus_lr_ratio = float(loraplus_lr_ratio) if loraplus_lr_ratio is not None else None loraplus_unet_lr_ratio = float(loraplus_unet_lr_ratio) if loraplus_unet_lr_ratio is not None else None loraplus_text_encoder_lr_ratio = float(loraplus_text_encoder_lr_ratio) if loraplus_text_encoder_lr_ratio is not None else None if loraplus_lr_ratio is not None or loraplus_unet_lr_ratio is not None or loraplus_text_encoder_lr_ratio is not None: network.set_loraplus_lr_ratio(loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio) return network # Create network from weights for inference, weights are not loaded here (because can be merged) def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs): if weights_sd is None: if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file, safe_open weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") # get dim/alpha mapping modules_dim = {} modules_alpha = {} for key, value in weights_sd.items(): if "." not in key: continue lora_name = key.split(".")[0] if "alpha" in key: modules_alpha[lora_name] = value elif "lora_down" in key: dim = value.size()[0] modules_dim[lora_name] = dim # logger.info(f"{lora_name} {value.size()} {dim}") # support old LoRA without alpha for key in modules_dim.keys(): if key not in modules_alpha: modules_alpha = modules_dim[key] module_class = DyLoRAModule network = DyLoRANetwork( text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class ) return network, weights_sd class DyLoRANetwork(torch.nn.Module): UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] LORA_PREFIX_UNET = "lora_unet" LORA_PREFIX_TEXT_ENCODER = "lora_te" def __init__( self, text_encoder, unet, multiplier=1.0, lora_dim=4, alpha=1, apply_to_conv=False, modules_dim=None, modules_alpha=None, unit=1, module_class=DyLoRAModule, varbose=False, ) -> None: super().__init__() self.multiplier = multiplier self.lora_dim = lora_dim self.alpha = alpha self.apply_to_conv = apply_to_conv self.loraplus_lr_ratio = None self.loraplus_unet_lr_ratio = None self.loraplus_text_encoder_lr_ratio = None if modules_dim is not None: logger.info("create LoRA network from weights") else: logger.info(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}, unit: {unit}") if self.apply_to_conv: logger.info("apply LoRA to Conv2d with kernel size (3,3).") # create module instances def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[DyLoRAModule]: prefix = DyLoRANetwork.LORA_PREFIX_UNET if is_unet else DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER loras = [] for name, module in root_module.named_modules(): if module.__class__.__name__ in target_replace_modules: for child_name, child_module in module.named_modules(): is_linear = child_module.__class__.__name__ == "Linear" is_conv2d = child_module.__class__.__name__ == "Conv2d" is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) if is_linear or is_conv2d: lora_name = prefix + "." + name + "." + child_name lora_name = lora_name.replace(".", "_") dim = None alpha = None if modules_dim is not None: if lora_name in modules_dim: dim = modules_dim[lora_name] alpha = modules_alpha[lora_name] else: if is_linear or is_conv2d_1x1 or apply_to_conv: dim = self.lora_dim alpha = self.alpha if dim is None or dim == 0: continue # dropout and fan_in_fan_out is default lora = module_class(lora_name, child_module, self.multiplier, dim, alpha, unit) loras.append(lora) return loras text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] self.text_encoder_loras = [] for i, text_encoder in enumerate(text_encoders): if len(text_encoders) > 1: index = i + 1 logger.info(f"create LoRA for Text Encoder {index}") else: index = None logger.info("create LoRA for Text Encoder") text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) self.text_encoder_loras.extend(text_encoder_loras) # self.text_encoder_loras = create_modules(False, text_encoder, DyLoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE) logger.info(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights target_modules = DyLoRANetwork.UNET_TARGET_REPLACE_MODULE if modules_dim is not None or self.apply_to_conv: target_modules += DyLoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 self.unet_loras = create_modules(True, unet, target_modules) logger.info(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") def set_loraplus_lr_ratio(self, loraplus_lr_ratio, loraplus_unet_lr_ratio, loraplus_text_encoder_lr_ratio): self.loraplus_lr_ratio = loraplus_lr_ratio self.loraplus_unet_lr_ratio = loraplus_unet_lr_ratio self.loraplus_text_encoder_lr_ratio = loraplus_text_encoder_lr_ratio logger.info(f"LoRA+ UNet LR Ratio: {self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio}") logger.info(f"LoRA+ Text Encoder LR Ratio: {self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio}") def set_multiplier(self, multiplier): self.multiplier = multiplier for lora in self.text_encoder_loras + self.unet_loras: lora.multiplier = self.multiplier def load_weights(self, file): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") info = self.load_state_dict(weights_sd, False) return info def apply_to(self, text_encoder, unet, apply_text_encoder=True, apply_unet=True): if apply_text_encoder: logger.info("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: logger.info("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: lora.apply_to() self.add_module(lora.lora_name, lora) """ def merge_to(self, text_encoder, unet, weights_sd, dtype, device): apply_text_encoder = apply_unet = False for key in weights_sd.keys(): if key.startswith(DyLoRANetwork.LORA_PREFIX_TEXT_ENCODER): apply_text_encoder = True elif key.startswith(DyLoRANetwork.LORA_PREFIX_UNET): apply_unet = True if apply_text_encoder: logger.info("enable LoRA for text encoder") else: self.text_encoder_loras = [] if apply_unet: logger.info("enable LoRA for U-Net") else: self.unet_loras = [] for lora in self.text_encoder_loras + self.unet_loras: sd_for_lora = {} for key in weights_sd.keys(): if key.startswith(lora.lora_name): sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key] lora.merge_to(sd_for_lora, dtype, device) logger.info(f"weights are merged") """ # 二つのText Encoderに別々の学習率を設定できるようにするといいかも def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): self.requires_grad_(True) all_params = [] def assemble_params(loras, lr, ratio): param_groups = {"lora": {}, "plus": {}} for lora in loras: for name, param in lora.named_parameters(): if ratio is not None and "lora_B" in name: param_groups["plus"][f"{lora.lora_name}.{name}"] = param else: param_groups["lora"][f"{lora.lora_name}.{name}"] = param params = [] for key in param_groups.keys(): param_data = {"params": param_groups[key].values()} if len(param_data["params"]) == 0: continue if lr is not None: if key == "plus": param_data["lr"] = lr * ratio else: param_data["lr"] = lr if param_data.get("lr", None) == 0 or param_data.get("lr", None) is None: continue params.append(param_data) return params if self.text_encoder_loras: params = assemble_params( self.text_encoder_loras, text_encoder_lr if text_encoder_lr is not None else default_lr, self.loraplus_text_encoder_lr_ratio or self.loraplus_lr_ratio, ) all_params.extend(params) if self.unet_loras: params = assemble_params( self.unet_loras, default_lr if unet_lr is None else unet_lr, self.loraplus_unet_lr_ratio or self.loraplus_lr_ratio ) all_params.extend(params) return all_params def enable_gradient_checkpointing(self): # not supported pass def prepare_grad_etc(self, text_encoder, unet): self.requires_grad_(True) def on_epoch_start(self, text_encoder, unet): self.train() def get_trainable_params(self): return self.parameters() def save_weights(self, file, dtype, metadata): if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() if dtype is not None: for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) state_dict[key] = v if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file from library import train_util # Precalculate model hashes to save time on indexing if metadata is None: metadata = {} model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash save_file(state_dict, file, metadata) else: torch.save(state_dict, file) # mask is a tensor with values from 0 to 1 def set_region(self, sub_prompt_index, is_last_network, mask): pass def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared): pass