import argparse import math import os import time from typing import Any, Dict, Union import torch from safetensors import safe_open from safetensors.torch import load_file, save_file from tqdm import tqdm from library.utils import setup_logging, str_to_dtype, MemoryEfficientSafeOpen, mem_eff_save_file setup_logging() import logging logger = logging.getLogger(__name__) import lora_flux as lora_flux from library import sai_model_spec, train_util def load_state_dict(file_name, dtype): if os.path.splitext(file_name)[1] == ".safetensors": sd = load_file(file_name) metadata = train_util.load_metadata_from_safetensors(file_name) else: sd = torch.load(file_name, map_location="cpu") metadata = {} for key in list(sd.keys()): if type(sd[key]) == torch.Tensor: sd[key] = sd[key].to(dtype) return sd, metadata def save_to_file(file_name, state_dict: Dict[str, Union[Any, torch.Tensor]], dtype, metadata, mem_eff_save=False): if dtype is not None: logger.info(f"converting to {dtype}...") for key in tqdm(list(state_dict.keys())): if type(state_dict[key]) == torch.Tensor and state_dict[key].dtype.is_floating_point: state_dict[key] = state_dict[key].to(dtype) logger.info(f"saving to: {file_name}") if mem_eff_save: mem_eff_save_file(state_dict, file_name, metadata=metadata) else: save_file(state_dict, file_name, metadata=metadata) def merge_to_flux_model( loading_device, working_device, flux_path: str, clip_l_path: str, t5xxl_path: str, models, ratios, merge_dtype, save_dtype, mem_eff_load_save=False, ): # create module map without loading state_dict lora_name_to_module_key = {} if flux_path is not None: logger.info(f"loading keys from FLUX.1 model: {flux_path}") with safe_open(flux_path, framework="pt", device=loading_device) as flux_file: keys = list(flux_file.keys()) for key in keys: if key.endswith(".weight"): module_name = ".".join(key.split(".")[:-1]) lora_name = lora_flux.LoRANetwork.LORA_PREFIX_FLUX + "_" + module_name.replace(".", "_") lora_name_to_module_key[lora_name] = key lora_name_to_clip_l_key = {} if clip_l_path is not None: logger.info(f"loading keys from clip_l model: {clip_l_path}") with safe_open(clip_l_path, framework="pt", device=loading_device) as clip_l_file: keys = list(clip_l_file.keys()) for key in keys: if key.endswith(".weight"): module_name = ".".join(key.split(".")[:-1]) lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_CLIP + "_" + module_name.replace(".", "_") lora_name_to_clip_l_key[lora_name] = key lora_name_to_t5xxl_key = {} if t5xxl_path is not None: logger.info(f"loading keys from t5xxl model: {t5xxl_path}") with safe_open(t5xxl_path, framework="pt", device=loading_device) as t5xxl_file: keys = list(t5xxl_file.keys()) for key in keys: if key.endswith(".weight"): module_name = ".".join(key.split(".")[:-1]) lora_name = lora_flux.LoRANetwork.LORA_PREFIX_TEXT_ENCODER_T5 + "_" + module_name.replace(".", "_") lora_name_to_t5xxl_key[lora_name] = key flux_state_dict = {} clip_l_state_dict = {} t5xxl_state_dict = {} if mem_eff_load_save: if flux_path is not None: with MemoryEfficientSafeOpen(flux_path) as flux_file: for key in tqdm(flux_file.keys()): flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed if clip_l_path is not None: with MemoryEfficientSafeOpen(clip_l_path) as clip_l_file: for key in tqdm(clip_l_file.keys()): clip_l_state_dict[key] = clip_l_file.get_tensor(key).to(loading_device) if t5xxl_path is not None: with MemoryEfficientSafeOpen(t5xxl_path) as t5xxl_file: for key in tqdm(t5xxl_file.keys()): t5xxl_state_dict[key] = t5xxl_file.get_tensor(key).to(loading_device) else: if flux_path is not None: flux_state_dict = load_file(flux_path, device=loading_device) if clip_l_path is not None: clip_l_state_dict = load_file(clip_l_path, device=loading_device) if t5xxl_path is not None: t5xxl_state_dict = load_file(t5xxl_path, device=loading_device) for model, ratio in zip(models, ratios): logger.info(f"loading: {model}") lora_sd, _ = load_state_dict(model, merge_dtype) # loading on CPU logger.info(f"merging...") for key in tqdm(list(lora_sd.keys())): if "lora_down" in key: lora_name = key[: key.rfind(".lora_down")] up_key = key.replace("lora_down", "lora_up") alpha_key = key[: key.index("lora_down")] + "alpha" if lora_name in lora_name_to_module_key: module_weight_key = lora_name_to_module_key[lora_name] state_dict = flux_state_dict elif lora_name in lora_name_to_clip_l_key: module_weight_key = lora_name_to_clip_l_key[lora_name] state_dict = clip_l_state_dict elif lora_name in lora_name_to_t5xxl_key: module_weight_key = lora_name_to_t5xxl_key[lora_name] state_dict = t5xxl_state_dict else: logger.warning( f"no module found for LoRA weight: {key}. Skipping..." f"LoRAの重みに対応するモジュールが見つかりませんでした。スキップします。" ) continue down_weight = lora_sd.pop(key) up_weight = lora_sd.pop(up_key) dim = down_weight.size()[0] alpha = lora_sd.pop(alpha_key, dim) scale = alpha / dim # W <- W + U * D weight = state_dict[module_weight_key] weight = weight.to(working_device, merge_dtype) up_weight = up_weight.to(working_device, merge_dtype) down_weight = down_weight.to(working_device, merge_dtype) # logger.info(module_name, down_weight.size(), up_weight.size()) if len(weight.size()) == 2: # linear weight = weight + ratio * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 weight = ( weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) # logger.info(conved.size(), weight.size(), module.stride, module.padding) weight = weight + ratio * conved * scale state_dict[module_weight_key] = weight.to(loading_device, save_dtype) del up_weight del down_weight del weight if len(lora_sd) > 0: logger.warning(f"Unused keys in LoRA model: {list(lora_sd.keys())}") return flux_state_dict, clip_l_state_dict, t5xxl_state_dict def merge_to_flux_model_diffusers( loading_device, working_device, flux_model, models, ratios, merge_dtype, save_dtype, mem_eff_load_save=False ): logger.info(f"loading keys from FLUX.1 model: {flux_model}") if mem_eff_load_save: flux_state_dict = {} with MemoryEfficientSafeOpen(flux_model) as flux_file: for key in tqdm(flux_file.keys()): flux_state_dict[key] = flux_file.get_tensor(key).to(loading_device) # dtype is not changed else: flux_state_dict = load_file(flux_model, device=loading_device) def create_key_map(n_double_layers, n_single_layers): key_map = {} for index in range(n_double_layers): prefix_from = f"transformer_blocks.{index}" prefix_to = f"double_blocks.{index}" for end in ("weight", "bias"): k = f"{prefix_from}.attn." qkv_img = f"{prefix_to}.img_attn.qkv.{end}" qkv_txt = f"{prefix_to}.txt_attn.qkv.{end}" key_map[f"{k}to_q.{end}"] = qkv_img key_map[f"{k}to_k.{end}"] = qkv_img key_map[f"{k}to_v.{end}"] = qkv_img key_map[f"{k}add_q_proj.{end}"] = qkv_txt key_map[f"{k}add_k_proj.{end}"] = qkv_txt key_map[f"{k}add_v_proj.{end}"] = qkv_txt block_map = { "attn.to_out.0.weight": "img_attn.proj.weight", "attn.to_out.0.bias": "img_attn.proj.bias", "norm1.linear.weight": "img_mod.lin.weight", "norm1.linear.bias": "img_mod.lin.bias", "norm1_context.linear.weight": "txt_mod.lin.weight", "norm1_context.linear.bias": "txt_mod.lin.bias", "attn.to_add_out.weight": "txt_attn.proj.weight", "attn.to_add_out.bias": "txt_attn.proj.bias", "ff.net.0.proj.weight": "img_mlp.0.weight", "ff.net.0.proj.bias": "img_mlp.0.bias", "ff.net.2.weight": "img_mlp.2.weight", "ff.net.2.bias": "img_mlp.2.bias", "ff_context.net.0.proj.weight": "txt_mlp.0.weight", "ff_context.net.0.proj.bias": "txt_mlp.0.bias", "ff_context.net.2.weight": "txt_mlp.2.weight", "ff_context.net.2.bias": "txt_mlp.2.bias", "attn.norm_q.weight": "img_attn.norm.query_norm.scale", "attn.norm_k.weight": "img_attn.norm.key_norm.scale", "attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale", "attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale", } for k, v in block_map.items(): key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}" for index in range(n_single_layers): prefix_from = f"single_transformer_blocks.{index}" prefix_to = f"single_blocks.{index}" for end in ("weight", "bias"): k = f"{prefix_from}.attn." qkv = f"{prefix_to}.linear1.{end}" key_map[f"{k}to_q.{end}"] = qkv key_map[f"{k}to_k.{end}"] = qkv key_map[f"{k}to_v.{end}"] = qkv key_map[f"{prefix_from}.proj_mlp.{end}"] = qkv block_map = { "norm.linear.weight": "modulation.lin.weight", "norm.linear.bias": "modulation.lin.bias", "proj_out.weight": "linear2.weight", "proj_out.bias": "linear2.bias", "attn.norm_q.weight": "norm.query_norm.scale", "attn.norm_k.weight": "norm.key_norm.scale", } for k, v in block_map.items(): key_map[f"{prefix_from}.{k}"] = f"{prefix_to}.{v}" # add as-is keys values = list([(v if isinstance(v, str) else v[0]) for v in set(key_map.values())]) values.sort() key_map.update({v: v for v in values}) return key_map key_map = create_key_map(18, 38) # 18 double layers, 38 single layers def find_matching_key(flux_dict, lora_key): lora_key = lora_key.replace("diffusion_model.", "") lora_key = lora_key.replace("transformer.", "") lora_key = lora_key.replace("lora_A", "lora_down").replace("lora_B", "lora_up") lora_key = lora_key.replace("single_transformer_blocks", "single_blocks") lora_key = lora_key.replace("transformer_blocks", "double_blocks") double_block_map = { "attn.to_out.0": "img_attn.proj", "norm1.linear": "img_mod.lin", "norm1_context.linear": "txt_mod.lin", "attn.to_add_out": "txt_attn.proj", "ff.net.0.proj": "img_mlp.0", "ff.net.2": "img_mlp.2", "ff_context.net.0.proj": "txt_mlp.0", "ff_context.net.2": "txt_mlp.2", "attn.norm_q": "img_attn.norm.query_norm", "attn.norm_k": "img_attn.norm.key_norm", "attn.norm_added_q": "txt_attn.norm.query_norm", "attn.norm_added_k": "txt_attn.norm.key_norm", "attn.to_q": "img_attn.qkv", "attn.to_k": "img_attn.qkv", "attn.to_v": "img_attn.qkv", "attn.add_q_proj": "txt_attn.qkv", "attn.add_k_proj": "txt_attn.qkv", "attn.add_v_proj": "txt_attn.qkv", } single_block_map = { "norm.linear": "modulation.lin", "proj_out": "linear2", "attn.norm_q": "norm.query_norm", "attn.norm_k": "norm.key_norm", "attn.to_q": "linear1", "attn.to_k": "linear1", "attn.to_v": "linear1", "proj_mlp": "linear1", } # same key exists in both single_block_map and double_block_map, so we must care about single/double # print("lora_key before double_block_map", lora_key) for old, new in double_block_map.items(): if "double" in lora_key: lora_key = lora_key.replace(old, new) # print("lora_key before single_block_map", lora_key) for old, new in single_block_map.items(): if "single" in lora_key: lora_key = lora_key.replace(old, new) # print("lora_key after mapping", lora_key) if lora_key in key_map: flux_key = key_map[lora_key] logger.info(f"Found matching key: {flux_key}") return flux_key # If not found in key_map, try partial matching potential_key = lora_key + ".weight" logger.info(f"Searching for key: {potential_key}") matches = [k for k in flux_dict.keys() if potential_key in k] if matches: logger.info(f"Found matching key: {matches[0]}") return matches[0] return None merged_keys = set() for model, ratio in zip(models, ratios): logger.info(f"loading: {model}") lora_sd, _ = load_state_dict(model, merge_dtype) logger.info("merging...") for key in lora_sd.keys(): if "lora_down" in key or "lora_A" in key: lora_name = key[: key.rfind(".lora_down" if "lora_down" in key else ".lora_A")] up_key = key.replace("lora_down", "lora_up").replace("lora_A", "lora_B") alpha_key = key[: key.index("lora_down" if "lora_down" in key else "lora_A")] + "alpha" logger.info(f"Processing LoRA key: {lora_name}") flux_key = find_matching_key(flux_state_dict, lora_name) if flux_key is None: logger.warning(f"no module found for LoRA weight: {key}") continue logger.info(f"Merging LoRA key {lora_name} into Flux key {flux_key}") down_weight = lora_sd[key] up_weight = lora_sd[up_key] dim = down_weight.size()[0] alpha = lora_sd.get(alpha_key, dim) scale = alpha / dim weight = flux_state_dict[flux_key] weight = weight.to(working_device, merge_dtype) up_weight = up_weight.to(working_device, merge_dtype) down_weight = down_weight.to(working_device, merge_dtype) # print(up_weight.size(), down_weight.size(), weight.size()) if lora_name.startswith("transformer."): if "qkv" in flux_key or "linear1" in flux_key: # combined qkv or qkv+mlp update = ratio * (up_weight @ down_weight) * scale # print(update.shape) if "img_attn" in flux_key or "txt_attn" in flux_key: q, k, v = torch.chunk(weight, 3, dim=0) if "to_q" in lora_name or "add_q_proj" in lora_name: q += update.reshape(q.shape) elif "to_k" in lora_name or "add_k_proj" in lora_name: k += update.reshape(k.shape) elif "to_v" in lora_name or "add_v_proj" in lora_name: v += update.reshape(v.shape) weight = torch.cat([q, k, v], dim=0) elif "linear1" in flux_key: q, k, v = torch.chunk(weight[: int(update.shape[-1] * 3)], 3, dim=0) mlp = weight[int(update.shape[-1] * 3) :] # print(q.shape, k.shape, v.shape, mlp.shape) if "to_q" in lora_name: q += update.reshape(q.shape) elif "to_k" in lora_name: k += update.reshape(k.shape) elif "to_v" in lora_name: v += update.reshape(v.shape) elif "proj_mlp" in lora_name: mlp += update.reshape(mlp.shape) weight = torch.cat([q, k, v, mlp], dim=0) else: if len(weight.size()) == 2: weight = weight + ratio * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): weight = ( weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) weight = weight + ratio * conved * scale else: if len(weight.size()) == 2: weight = weight + ratio * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): weight = ( weight + ratio * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) weight = weight + ratio * conved * scale flux_state_dict[flux_key] = weight.to(loading_device, save_dtype) merged_keys.add(flux_key) del up_weight del down_weight del weight logger.info(f"Merged keys: {sorted(list(merged_keys))}") return flux_state_dict def merge_lora_models(models, ratios, merge_dtype, concat=False, shuffle=False): base_alphas = {} # alpha for merged model base_dims = {} merged_sd = {} base_model = None for model, ratio in zip(models, ratios): logger.info(f"loading: {model}") lora_sd, lora_metadata = load_state_dict(model, merge_dtype) if lora_metadata is not None: if base_model is None: base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) # get alpha and dim alphas = {} # alpha for current model dims = {} # dims for current model for key in lora_sd.keys(): if "alpha" in key: lora_module_name = key[: key.rfind(".alpha")] alpha = float(lora_sd[key].detach().numpy()) alphas[lora_module_name] = alpha if lora_module_name not in base_alphas: base_alphas[lora_module_name] = alpha elif "lora_down" in key: lora_module_name = key[: key.rfind(".lora_down")] dim = lora_sd[key].size()[0] dims[lora_module_name] = dim if lora_module_name not in base_dims: base_dims[lora_module_name] = dim for lora_module_name in dims.keys(): if lora_module_name not in alphas: alpha = dims[lora_module_name] alphas[lora_module_name] = alpha if lora_module_name not in base_alphas: base_alphas[lora_module_name] = alpha logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}") # merge logger.info("merging...") for key in tqdm(lora_sd.keys()): if "alpha" in key: continue if "lora_up" in key and concat: concat_dim = 1 elif "lora_down" in key and concat: concat_dim = 0 else: concat_dim = None lora_module_name = key[: key.rfind(".lora_")] base_alpha = base_alphas[lora_module_name] alpha = alphas[lora_module_name] scale = math.sqrt(alpha / base_alpha) * ratio scale = abs(scale) if "lora_up" in key else scale # マイナスの重みに対応する。 if key in merged_sd: assert ( merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None ), "weights shape mismatch, different dims? / 重みのサイズが合いません。dimが異なる可能性があります。" if concat_dim is not None: merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim) else: merged_sd[key] = merged_sd[key] + lora_sd[key] * scale else: merged_sd[key] = lora_sd[key] * scale # set alpha to sd for lora_module_name, alpha in base_alphas.items(): key = lora_module_name + ".alpha" merged_sd[key] = torch.tensor(alpha) if shuffle: key_down = lora_module_name + ".lora_down.weight" key_up = lora_module_name + ".lora_up.weight" dim = merged_sd[key_down].shape[0] perm = torch.randperm(dim) merged_sd[key_down] = merged_sd[key_down][perm] merged_sd[key_up] = merged_sd[key_up][:, perm] logger.info("merged model") logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}") # check all dims are same dims_list = list(set(base_dims.values())) alphas_list = list(set(base_alphas.values())) all_same_dims = True all_same_alphas = True for dims in dims_list: if dims != dims_list[0]: all_same_dims = False break for alphas in alphas_list: if alphas != alphas_list[0]: all_same_alphas = False break # build minimum metadata dims = f"{dims_list[0]}" if all_same_dims else "Dynamic" alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic" metadata = train_util.build_minimum_network_metadata(str(False), base_model, "networks.lora", dims, alphas, None) return merged_sd, metadata def merge(args): if args.models is None: args.models = [] if args.ratios is None: args.ratios = [] assert len(args.models) == len( args.ratios ), "number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" merge_dtype = str_to_dtype(args.precision) save_dtype = str_to_dtype(args.save_precision) if save_dtype is None: save_dtype = merge_dtype assert ( args.save_to or args.clip_l_save_to or args.t5xxl_save_to ), "save_to or clip_l_save_to or t5xxl_save_to must be specified / save_toまたはclip_l_save_toまたはt5xxl_save_toを指定してください" dest_dir = os.path.dirname(args.save_to or args.clip_l_save_to or args.t5xxl_save_to) if not os.path.exists(dest_dir): logger.info(f"creating directory: {dest_dir}") os.makedirs(dest_dir) if args.flux_model is not None or args.clip_l is not None or args.t5xxl is not None: if not args.diffusers: assert (args.clip_l is None and args.clip_l_save_to is None) or ( args.clip_l is not None and args.clip_l_save_to is not None ), "clip_l_save_to must be specified if clip_l is specified / clip_lが指定されている場合はclip_l_save_toも指定してください" assert (args.t5xxl is None and args.t5xxl_save_to is None) or ( args.t5xxl is not None and args.t5xxl_save_to is not None ), "t5xxl_save_to must be specified if t5xxl is specified / t5xxlが指定されている場合はt5xxl_save_toも指定してください" flux_state_dict, clip_l_state_dict, t5xxl_state_dict = merge_to_flux_model( args.loading_device, args.working_device, args.flux_model, args.clip_l, args.t5xxl, args.models, args.ratios, merge_dtype, save_dtype, args.mem_eff_load_save, ) else: assert ( args.clip_l is None and args.t5xxl is None ), "clip_l and t5xxl are not supported with --diffusers / clip_l、t5xxlはDiffusersではサポートされていません" flux_state_dict = merge_to_flux_model_diffusers( args.loading_device, args.working_device, args.flux_model, args.models, args.ratios, merge_dtype, save_dtype, args.mem_eff_load_save, ) clip_l_state_dict = None t5xxl_state_dict = None if args.no_metadata or (flux_state_dict is None or len(flux_state_dict) == 0): sai_metadata = None else: merged_from = sai_model_spec.build_merged_from([args.flux_model] + args.models) title = os.path.splitext(os.path.basename(args.save_to))[0] sai_metadata = sai_model_spec.build_metadata( None, False, False, False, False, False, time.time(), title=title, merged_from=merged_from, flux="dev" ) if flux_state_dict is not None and len(flux_state_dict) > 0: logger.info(f"saving FLUX model to: {args.save_to}") save_to_file(args.save_to, flux_state_dict, save_dtype, sai_metadata, args.mem_eff_load_save) if clip_l_state_dict is not None and len(clip_l_state_dict) > 0: logger.info(f"saving clip_l model to: {args.clip_l_save_to}") save_to_file(args.clip_l_save_to, clip_l_state_dict, save_dtype, None, args.mem_eff_load_save) if t5xxl_state_dict is not None and len(t5xxl_state_dict) > 0: logger.info(f"saving t5xxl model to: {args.t5xxl_save_to}") save_to_file(args.t5xxl_save_to, t5xxl_state_dict, save_dtype, None, args.mem_eff_load_save) else: flux_state_dict, metadata = merge_lora_models(args.models, args.ratios, merge_dtype, args.concat, args.shuffle) logger.info("calculating hashes and creating metadata...") model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(flux_state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash if not args.no_metadata: merged_from = sai_model_spec.build_merged_from(args.models) title = os.path.splitext(os.path.basename(args.save_to))[0] sai_metadata = sai_model_spec.build_metadata( flux_state_dict, False, False, False, True, False, time.time(), title=title, merged_from=merged_from, flux="dev" ) metadata.update(sai_metadata) logger.info(f"saving model to: {args.save_to}") save_to_file(args.save_to, flux_state_dict, save_dtype, metadata) def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument( "--save_precision", type=str, default=None, help="precision in saving, same to merging if omitted. supported types: " "float32, fp16, bf16, fp8 (same as fp8_e4m3fn), fp8_e4m3fn, fp8_e4m3fnuz, fp8_e5m2, fp8_e5m2fnuz" " / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", ) parser.add_argument( "--precision", type=str, default="float", help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", ) parser.add_argument( "--flux_model", type=str, default=None, help="FLUX.1 model to load, merge LoRA models if omitted / 読み込むモデル、指定しない場合はLoRAモデルをマージする", ) parser.add_argument( "--clip_l", type=str, default=None, help="path to clip_l (*.sft or *.safetensors), should be float16 / clip_lのパス(*.sftまたは*.safetensors)", ) parser.add_argument( "--t5xxl", type=str, default=None, help="path to t5xxl (*.sft or *.safetensors), should be float16 / t5xxlのパス(*.sftまたは*.safetensors)", ) parser.add_argument( "--mem_eff_load_save", action="store_true", help="use custom memory efficient load and save functions for FLUX.1 model" " / カスタムのメモリ効率の良い読み込みと保存関数をFLUX.1モデルに使用する", ) parser.add_argument( "--loading_device", type=str, default="cpu", help="device to load FLUX.1 model. LoRA models are loaded on CPU / FLUX.1モデルを読み込むデバイス。LoRAモデルはCPUで読み込まれます", ) parser.add_argument( "--working_device", type=str, default="cpu", help="device to work (merge). Merging LoRA models are done on CPU." + " / 作業(マージ)するデバイス。LoRAモデルのマージはCPUで行われます。", ) parser.add_argument( "--save_to", type=str, default=None, help="destination file name: safetensors file / 保存先のファイル名、safetensorsファイル", ) parser.add_argument( "--clip_l_save_to", type=str, default=None, help="destination file name for clip_l: safetensors file / clip_lの保存先のファイル名、safetensorsファイル", ) parser.add_argument( "--t5xxl_save_to", type=str, default=None, help="destination file name for t5xxl: safetensors file / t5xxlの保存先のファイル名、safetensorsファイル", ) parser.add_argument( "--models", type=str, nargs="*", help="LoRA models to merge: safetensors file / マージするLoRAモデル、safetensorsファイル", ) parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") parser.add_argument( "--no_metadata", action="store_true", help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " + "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", ) parser.add_argument( "--concat", action="store_true", help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / " + "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)", ) parser.add_argument( "--shuffle", action="store_true", help="shuffle lora weight./ " + "LoRAの重みをシャッフルする", ) parser.add_argument( "--diffusers", action="store_true", help="merge Diffusers (?) LoRA models / Diffusers (?) LoRAモデルをマージする", ) return parser if __name__ == "__main__": parser = setup_parser() args = parser.parse_args() merge(args)