#!/bin/bash CKPT_PATH="/path/to/unet/flux1-dev.safetensors" CLIP_L_PATH="/path/to/clip/clip_l.safetensors" T5XXL_PATH="/path/to/clip/t5xxl_fp16.safetensors" AE_PATH="/path/to/vae/ae.safetensors" dataset_config="/path/to/your/dataset/config.toml" output_dir="/path/to/output/directory" output_name="Model_Name" lora_ups_num=10 network_dim=64 max_train_steps=50000 accelerate launch \ --config_file "/path/to/accelerate/config.yaml" \ --num_cpu_threads_per_process 1 \ --gpu_ids 1 \ flux_train_network_asylora.py \ --dataset_config $dataset_config \ --pretrained_model_name_or_path $CKPT_PATH \ --ae $AE_PATH \ --clip_l $CLIP_L_PATH \ --t5xxl $T5XXL_PATH \ --optimizer_type came \ --max_grad_norm 1.0 \ --lr_scheduler constant \ --lr_warmup_steps 0 \ --lr_scheduler_num_cycles 1 \ --lr_scheduler_power 1.0 \ --min_snr_gamma 5 \ --output_name $output_name \ --output_dir $output_dir \ --network_dim $network_dim \ --network_alpha 1.0 \ --learning_rate 1e-4 \ --max_train_steps $max_train_steps \ --apply_t5_attn_mask \ --cache_latents_to_disk \ --cache_text_encoder_outputs \ --cache_text_encoder_outputs_to_disk \ --weighting_scheme logit_normal \ --logit_mean 0 \ --logit_std 1.0 \ --mode_scale 1.29 \ --timestep_sampling shift \ --sigmoid_scale 1.0 \ --model_prediction_type raw \ --guidance_scale 1.0 \ --discrete_flow_shift 3.1582 \ --fp8_base \ --highvram \ --gradient_checkpointing \ --seed 42 \ --save_precision bf16 \ --save_every_n_epochs 5 \ --network_module networks.asylora_flux \ --network_train_unet_only \ --vae_batch_size 1 \ --save_model_as safetensors \ --max_data_loader_n_workers 0 \ --mixed_precision bf16 \ --skip_cache_check \ --gradient_accumulation_steps 1 \ --lora_ups_num $lora_ups_num \ --log_config