ykallan commited on
Commit
d3cb5f2
·
verified ·
1 Parent(s): f12dc71

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -24
app.py CHANGED
@@ -1,43 +1,38 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("ykallan/SkuInfo-Qwen2.5-3B-Instruct")
 
 
 
8
 
9
 
10
  def respond(
11
  message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
  max_tokens,
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
 
43
  """
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
8
+
9
+ pretrained_model = "ykallan/SkuInfo-Qwen2.5-3B-Instruct"
10
+ model = AutoModelForCausalLM.from_pretrained(pretrained_model)
11
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
12
 
13
 
14
  def respond(
15
  message,
 
 
16
  max_tokens,
17
  temperature,
18
  top_p,
19
  ):
20
+ messages = [{"role": "system", "content": "在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。"}]
 
 
 
 
 
 
21
 
22
  messages.append({"role": "user", "content": message})
23
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
24
+ model_inputs = tokenizer([input_ids], return_tensors="pt", padding=True)
25
+
26
+ generate_config = {
27
+ "max_new_tokens": 128
28
+ }
29
+
30
+ generated_ids = model.generate(model_inputs.input_ids, **generate_config)
31
+ generated_ids = [
32
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
33
+ ]
34
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
35
+ return response
 
36
 
37
 
38
  """