import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ pretrained_model = "ykallan/SkuInfo-Qwen2.5-3B-Instruct" model = AutoModelForCausalLM.from_pretrained(pretrained_model) tokenizer = AutoTokenizer.from_pretrained(pretrained_model) def respond( message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": "在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。"}] messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([input_ids], return_tensors="pt", padding=True) generate_config = { "max_new_tokens": 128 } generated_ids = model.generate(model_inputs.input_ids, **generate_config) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="在以下商品名称中抽取出品牌、型号、主商品,并以JSON格式返回。", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()