import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model_name = "Qwen/Qwen2.5-Coder-32B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_response(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**inputs) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text") | |
demo.launch() | |