Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -10,6 +10,10 @@ from datasets import load_dataset
|
|
10 |
import random
|
11 |
|
12 |
dataset = load_dataset("ysharma/short_jokes", split="train")
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Model 2: Sentence Transformer
|
15 |
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/msmarco-distilbert-base-tas-b"
|
@@ -47,7 +51,7 @@ def driver_fun(audio) :
|
|
47 |
lower_limit = random_val - 5000
|
48 |
upper_limit = random_val
|
49 |
print(f"lower_limit : upper_limit = {lower_limit} : {upper_limit}")
|
50 |
-
dataset_subset =
|
51 |
data = query({"inputs": {"source_sentence": "That is a happy person","sentences": dataset_subset} } )
|
52 |
if 'error' in data:
|
53 |
print(f"Error is : {data}")
|
@@ -106,7 +110,7 @@ demo = gr.Blocks()
|
|
106 |
with demo:
|
107 |
gr.Markdown("<h1><center>AI Assistant - Voice to Joke</center></h1>")
|
108 |
gr.Markdown(
|
109 |
-
"""
|
110 |
""")
|
111 |
with gr.Row():
|
112 |
with gr.Column():
|
@@ -120,5 +124,9 @@ with demo:
|
|
120 |
#out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ')
|
121 |
|
122 |
b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_generated_joke, out_audio]) #out_translation_en, out_generated_text,out_generated_text_en,
|
123 |
-
|
|
|
|
|
|
|
|
|
124 |
demo.launch(enable_queue=True, debug=True)
|
|
|
10 |
import random
|
11 |
|
12 |
dataset = load_dataset("ysharma/short_jokes", split="train")
|
13 |
+
filtered_dataset = dataset.filter(
|
14 |
+
lambda x: (True not in [nsfw in x["Joke"].lower() for nsfw in ["warning", "fuck", "dead", "nsfw","69", "sex"]])
|
15 |
+
)
|
16 |
+
|
17 |
|
18 |
# Model 2: Sentence Transformer
|
19 |
API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/msmarco-distilbert-base-tas-b"
|
|
|
51 |
lower_limit = random_val - 5000
|
52 |
upper_limit = random_val
|
53 |
print(f"lower_limit : upper_limit = {lower_limit} : {upper_limit}")
|
54 |
+
dataset_subset = filtered_dataset['Joke'][lower_limit : upper_limit]
|
55 |
data = query({"inputs": {"source_sentence": "That is a happy person","sentences": dataset_subset} } )
|
56 |
if 'error' in data:
|
57 |
print(f"Error is : {data}")
|
|
|
110 |
with demo:
|
111 |
gr.Markdown("<h1><center>AI Assistant - Voice to Joke</center></h1>")
|
112 |
gr.Markdown(
|
113 |
+
"""This is still a work in porgress<br><br>Ask Whisper for a joke about anything you would wish.
|
114 |
""")
|
115 |
with gr.Row():
|
116 |
with gr.Column():
|
|
|
124 |
#out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ')
|
125 |
|
126 |
b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_generated_joke, out_audio]) #out_translation_en, out_generated_text,out_generated_text_en,
|
127 |
+
with gr.Row():
|
128 |
+
gr.Markdown(
|
129 |
+
"""Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper) for Speech-to-text, <br>- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech. <br>- Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).<br><be>If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again!
|
130 |
+
""")
|
131 |
+
|
132 |
demo.launch(enable_queue=True, debug=True)
|