import os import gradio as gr import whisper import requests import tempfile from neon_tts_plugin_coqui import CoquiTTS from datasets import load_dataset dataset = load_dataset("ysharma/short_jokes") # Language common in both the multilingual models - English, Chinese, Spanish, and French etc # So it would make sense to test the App on these four prominently # Whisper: Speech-to-text model = whisper.load_model("base") model_med = whisper.load_model("medium") # Languages covered in Whisper - (exhaustive list) : #"en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", #"ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", #"pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", #"it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", #"iw": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", #"ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", #"th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", #"la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", #"te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", #"az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", #"mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", #"ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", #"sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", #"km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", #"oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", #"gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", #"fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", #"mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", #"tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", #"ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", # Text-to-Speech LANGUAGES = list(CoquiTTS.langs.keys()) coquiTTS = CoquiTTS() print(f"Languages for Coqui are: {LANGUAGES}") #Languages for Coqui are: ['en', 'es', 'fr', 'de', 'pl', 'uk', 'ro', 'hu', 'el', 'bg', 'nl', 'fi', 'sl', 'lv', 'ga'] # en - English, es - Spanish, fr - French, de - German, pl - Polish # uk - Ukrainian, ro - Romanian, hu - Hungarian, el - Greek, bg - Bulgarian, # nl - dutch, fi - finnish, sl - slovenian, lv - latvian, ga - ?? # Driver function def driver_fun(audio) : transcribe, translation, lang = whisper_stt(audio) #text1 = model.transcribe(audio)["text"] #For now only taking in English text for Bloom prompting as inference model is not high spec #text_generated = lang_model_response(transcribe, lang) #text_generated_en = lang_model_response(translation, 'en') if lang in ['es', 'fr']: speech = tts(transcribe, lang) else: speech = tts(translation, 'en') #'en') return transcribe, translation, speech # Whisper - speech-to-text def whisper_stt(audio): print("Inside Whisper TTS") # load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # make log-Mel spectrogram and move to the same device as the model mel = whisper.log_mel_spectrogram(audio).to(model.device) # detect the spoken language _, probs = model.detect_language(mel) lang = max(probs, key=probs.get) print(f"Detected language: {max(probs, key=probs.get)}") # decode the audio options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') #lang options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') #lang result_transc = whisper.decode(model_med, mel, options_transc) result_transl = whisper.decode(model_med, mel, options_transl) # print the recognized text print(f"transcript is : {result_transc.text}") print(f"translation is : {result_transl.text}") return result_transc.text, result_transl.text, lang # Coqui - Text-to-Speech def tts(text, language): print(f"Inside tts - language is : {language}") coqui_langs = ['en' ,'es' ,'fr' ,'de' ,'pl' ,'uk' ,'ro' ,'hu' ,'bg' ,'nl' ,'fi' ,'sl' ,'lv' ,'ga'] if language not in coqui_langs: language = 'en' with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: coquiTTS.get_tts(text, fp, speaker = {"language" : language}) return fp.name demo = gr.Blocks() with demo: gr.Markdown("

Multilingual AI Assistant - Voice to Joke

") gr.Markdown( """Model pipeline consisting of -
- [**Whisper**](https://github.com/openai/whisper) for Speech-to-text,
- [**CoquiTTS**](https://huggingface.co/coqui) for Text-To-Speech.
- Front end is built using [**Gradio Block API**](https://gradio.app/docs/#blocks).
Both CoquiTTS and Whisper are Multilingual, there are several overlapping languages between them. Hence it would be suggested to test this ML-App using these two languages to get the best results.
If you want to reuse the App, simply click on the small cross button in the top right corner of your voice record panel, and then press record again! """) with gr.Row(): with gr.Column(): in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice command here in English, Spanish or French for best results-') #type='filepath' b1 = gr.Button("AI response pipeline (Whisper - Bloom - Coqui pipeline)") out_transcript = gr.Textbox(label= 'English/Spanish/French Transcript of your Audio using OpenAI Whisper') out_translation_en = gr.Textbox(label= 'English Translation of audio using OpenAI Whisper') with gr.Column(): out_audio = gr.Audio(label='AI response in Audio form in your language - This will be either in Spanish, or in French or in English for all other languages -') out_generated_text = gr.Textbox(label= 'AI response to your query in your preferred language using Bloom! ') out_generated_text_en = gr.Textbox(label= 'AI response to your query in English using Bloom! ') b1.click(driver_fun,inputs=[in_audio], outputs=[out_transcript, out_translation_en, out_generated_text,out_generated_text_en, out_audio]) demo.launch(enable_queue=True, debug=True)