Spaces:
Runtime error
Runtime error
File size: 3,725 Bytes
906e212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import argparse
import functools
import pathlib
import cv2
import gradio as gr
import numpy as np
import PIL.Image
import torch
import anime_face_detector
def detect(
img,
face_score_threshold: float,
landmark_score_threshold: float,
detector: anime_face_detector.LandmarkDetector,
) -> PIL.Image.Image:
if not img:
return None
image = cv2.imread(img)
preds = detector(image)
res = image.copy()
for pred in preds:
box = pred["bbox"]
box, score = box[:4], box[4]
if score < face_score_threshold:
continue
box = np.round(box).astype(int)
lt = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0), lt)
pred_pts = pred["keypoints"]
for *pt, score in pred_pts:
if score < landmark_score_threshold:
color = (0, 255, 255)
else:
color = (0, 0, 255)
pt = np.round(pt).astype(int)
cv2.circle(res, tuple(pt), lt, color, cv2.FILLED)
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
image_pil = PIL.Image.fromarray(res)
return image_pil
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--detector", type=str, default="yolov3", choices=["yolov3", "faster-rcnn"]
)
parser.add_argument(
"--device", type=str, default="cuda:0", choices=["cuda:0", "cpu"]
)
parser.add_argument("--face-score-threshold", type=float, default=0.5)
parser.add_argument("--landmark-score-threshold", type=float, default=0.3)
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--port", type=int)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--share", action="store_true")
parser.add_argument("--live", action="store_true")
args = parser.parse_args()
sample_path = pathlib.Path("assets/input.jpg")
if not sample_path.exists():
torch.hub.download_url_to_file(
"https://raw.githubusercontent.com/edisonlee55/hysts-anime-face-detector/main/assets/input.jpg",
sample_path.as_posix(),
)
detector = anime_face_detector.create_detector(args.detector, device=args.device)
func = functools.partial(detect, detector=detector)
title = "edisonlee55/hysts-anime-face-detector"
description = "Demo for edisonlee55/hysts-anime-face-detector. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<a href='https://github.com/edisonlee55/hysts-anime-face-detector'>GitHub Repo</a>"
gr.Interface(
func,
[
gr.Image(type="filepath", label="Input"),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.face_score_threshold,
label="Face Score Threshold",
),
gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.landmark_score_threshold,
label="Landmark Score Threshold",
),
],
gr.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[
[
sample_path.as_posix(),
args.face_score_threshold,
args.landmark_score_threshold,
],
],
live=args.live,
).launch(
debug=args.debug, share=args.share, server_port=args.port, enable_queue=True
)
if __name__ == "__main__":
main()
|