Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,23 +7,25 @@ from sklearn.model_selection import train_test_split
|
|
7 |
from sklearn.linear_model import LinearRegression
|
8 |
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
from sklearn.compose import ColumnTransformer
|
10 |
-
from sklearn.preprocessing import
|
11 |
from sklearn.pipeline import Pipeline
|
12 |
import streamlit as st
|
13 |
|
14 |
# Veri okuma
|
15 |
df = pd.read_excel('Untitled3.xlsx')
|
16 |
|
|
|
17 |
y = df.BIST30
|
18 |
-
X = df.drop(['BIST30','Date','AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı','YiÜFE', 'USDTL',
|
19 |
-
'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO','LnYİÜFE','LnSÜE','ZBIST30',
|
20 |
'ZLnBist', 'COO_1'], axis=1)
|
21 |
|
|
|
22 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
|
24 |
# Ön işleme adımları
|
25 |
preprocess = ColumnTransformer(transformers=[
|
26 |
-
('num', StandardScaler(), ['LnTUFE','LnİSKO','LnUSDTL','LnTGE']),
|
27 |
])
|
28 |
|
29 |
# Model tanımlama
|
@@ -38,27 +40,25 @@ y_pred = pipe.predict(X_test)
|
|
38 |
print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
|
39 |
print("R^2 Score: ", r2_score(y_test, y_pred))
|
40 |
|
41 |
-
|
42 |
-
def
|
43 |
input_data = pd.DataFrame({
|
44 |
-
'
|
45 |
-
'
|
46 |
'LnUSDTL': [LnUSDTL],
|
47 |
'LnTGE': [LnTGE]
|
48 |
-
|
49 |
})
|
50 |
prediction = pipe.predict(input_data)[0]
|
51 |
return prediction
|
52 |
|
53 |
-
|
54 |
st.title("Bist30 Tahmini: @YED")
|
55 |
st.write("Lütfen Aşağıdaki bilgileri giriniz.")
|
56 |
-
LnTUFE = st.number_input("
|
57 |
LnİSKO = st.number_input("LnİSKO", 0.00, 10000.00)
|
58 |
LnUSDTL = st.number_input("LnUSDTL", 0.00, 10000.00)
|
59 |
LnTGE = st.number_input("LnTGE", 0.00, 10000.00)
|
60 |
|
61 |
if st.button("Predict"):
|
62 |
-
|
63 |
-
|
64 |
-
st.write("Bist30 Tahmini :",round(pred,2))
|
|
|
7 |
from sklearn.linear_model import LinearRegression
|
8 |
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
from sklearn.compose import ColumnTransformer
|
10 |
+
from sklearn.preprocessing import StandardScaler
|
11 |
from sklearn.pipeline import Pipeline
|
12 |
import streamlit as st
|
13 |
|
14 |
# Veri okuma
|
15 |
df = pd.read_excel('Untitled3.xlsx')
|
16 |
|
17 |
+
# Hedef değişken ve özellikler
|
18 |
y = df.BIST30
|
19 |
+
X = df.drop(['BIST30', 'Date', 'AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı', 'YiÜFE', 'USDTL',
|
20 |
+
'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO', 'LnYİÜFE', 'LnSÜE', 'ZBIST30',
|
21 |
'ZLnBist', 'COO_1'], axis=1)
|
22 |
|
23 |
+
# Veriyi eğitim ve test setlerine ayırma
|
24 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
25 |
|
26 |
# Ön işleme adımları
|
27 |
preprocess = ColumnTransformer(transformers=[
|
28 |
+
('num', StandardScaler(), ['LnTUFE', 'LnİSKO', 'LnUSDTL', 'LnTGE']),
|
29 |
])
|
30 |
|
31 |
# Model tanımlama
|
|
|
40 |
print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
|
41 |
print("R^2 Score: ", r2_score(y_test, y_pred))
|
42 |
|
43 |
+
# Tahmin fonksiyonu
|
44 |
+
def predict_bist30(LnTUFE, LnİSKO, LnUSDTL, LnTGE):
|
45 |
input_data = pd.DataFrame({
|
46 |
+
'LnTUFE': [LnTUFE],
|
47 |
+
'LnİSKO': [LnİSKO],
|
48 |
'LnUSDTL': [LnUSDTL],
|
49 |
'LnTGE': [LnTGE]
|
|
|
50 |
})
|
51 |
prediction = pipe.predict(input_data)[0]
|
52 |
return prediction
|
53 |
|
54 |
+
# Streamlit arayüzü
|
55 |
st.title("Bist30 Tahmini: @YED")
|
56 |
st.write("Lütfen Aşağıdaki bilgileri giriniz.")
|
57 |
+
LnTUFE = st.number_input("LnTUFE", 0.00, 10000.00)
|
58 |
LnİSKO = st.number_input("LnİSKO", 0.00, 10000.00)
|
59 |
LnUSDTL = st.number_input("LnUSDTL", 0.00, 10000.00)
|
60 |
LnTGE = st.number_input("LnTGE", 0.00, 10000.00)
|
61 |
|
62 |
if st.button("Predict"):
|
63 |
+
pred = predict_bist30(LnTUFE, LnİSKO, LnUSDTL, LnTGE)
|
64 |
+
st.write("Bist30 Tahmini:", round(pred, 2))
|
|