yunuseduran commited on
Commit
3ab3bac
·
verified ·
1 Parent(s): bce38ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -7,23 +7,25 @@ from sklearn.model_selection import train_test_split
7
  from sklearn.linear_model import LinearRegression
8
  from sklearn.metrics import mean_squared_error, r2_score
9
  from sklearn.compose import ColumnTransformer
10
- from sklearn.preprocessing import OneHotEncoder, StandardScaler
11
  from sklearn.pipeline import Pipeline
12
  import streamlit as st
13
 
14
  # Veri okuma
15
  df = pd.read_excel('Untitled3.xlsx')
16
 
 
17
  y = df.BIST30
18
- X = df.drop(['BIST30','Date','AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı','YiÜFE', 'USDTL',
19
- 'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO','LnYİÜFE','LnSÜE','ZBIST30',
20
  'ZLnBist', 'COO_1'], axis=1)
21
 
 
22
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
 
24
  # Ön işleme adımları
25
  preprocess = ColumnTransformer(transformers=[
26
- ('num', StandardScaler(), ['LnTUFE','LnİSKO','LnUSDTL','LnTGE']),
27
  ])
28
 
29
  # Model tanımlama
@@ -38,27 +40,25 @@ y_pred = pipe.predict(X_test)
38
  print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
39
  print("R^2 Score: ", r2_score(y_test, y_pred))
40
 
41
-
42
- def fail():
43
  input_data = pd.DataFrame({
44
- 'LnTufe': [LnTUFE],
45
- 'LNİSKO': [LnİSKO],
46
  'LnUSDTL': [LnUSDTL],
47
  'LnTGE': [LnTGE]
48
-
49
  })
50
  prediction = pipe.predict(input_data)[0]
51
  return prediction
52
 
53
-
54
  st.title("Bist30 Tahmini: @YED")
55
  st.write("Lütfen Aşağıdaki bilgileri giriniz.")
56
- LnTUFE = st.number_input("LnTufe", 0.00, 10000.00)
57
  LnİSKO = st.number_input("LnİSKO", 0.00, 10000.00)
58
  LnUSDTL = st.number_input("LnUSDTL", 0.00, 10000.00)
59
  LnTGE = st.number_input("LnTGE", 0.00, 10000.00)
60
 
61
  if st.button("Predict"):
62
- pred=BIST30(LnTUFE,LnİSKO,LnUSDTL,LnTGE)
63
-
64
- st.write("Bist30 Tahmini :",round(pred,2))
 
7
  from sklearn.linear_model import LinearRegression
8
  from sklearn.metrics import mean_squared_error, r2_score
9
  from sklearn.compose import ColumnTransformer
10
+ from sklearn.preprocessing import StandardScaler
11
  from sklearn.pipeline import Pipeline
12
  import streamlit as st
13
 
14
  # Veri okuma
15
  df = pd.read_excel('Untitled3.xlsx')
16
 
17
+ # Hedef değişken ve özellikler
18
  y = df.BIST30
19
+ X = df.drop(['BIST30', 'Date', 'AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı', 'YiÜFE', 'USDTL',
20
+ 'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO', 'LnYİÜFE', 'LnSÜE', 'ZBIST30',
21
  'ZLnBist', 'COO_1'], axis=1)
22
 
23
+ # Veriyi eğitim ve test setlerine ayırma
24
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
25
 
26
  # Ön işleme adımları
27
  preprocess = ColumnTransformer(transformers=[
28
+ ('num', StandardScaler(), ['LnTUFE', 'LnİSKO', 'LnUSDTL', 'LnTGE']),
29
  ])
30
 
31
  # Model tanımlama
 
40
  print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
41
  print("R^2 Score: ", r2_score(y_test, y_pred))
42
 
43
+ # Tahmin fonksiyonu
44
+ def predict_bist30(LnTUFE, LnİSKO, LnUSDTL, LnTGE):
45
  input_data = pd.DataFrame({
46
+ 'LnTUFE': [LnTUFE],
47
+ 'LnİSKO': [LnİSKO],
48
  'LnUSDTL': [LnUSDTL],
49
  'LnTGE': [LnTGE]
 
50
  })
51
  prediction = pipe.predict(input_data)[0]
52
  return prediction
53
 
54
+ # Streamlit arayüzü
55
  st.title("Bist30 Tahmini: @YED")
56
  st.write("Lütfen Aşağıdaki bilgileri giriniz.")
57
+ LnTUFE = st.number_input("LnTUFE", 0.00, 10000.00)
58
  LnİSKO = st.number_input("LnİSKO", 0.00, 10000.00)
59
  LnUSDTL = st.number_input("LnUSDTL", 0.00, 10000.00)
60
  LnTGE = st.number_input("LnTGE", 0.00, 10000.00)
61
 
62
  if st.button("Predict"):
63
+ pred = predict_bist30(LnTUFE, LnİSKO, LnUSDTL, LnTGE)
64
+ st.write("Bist30 Tahmini:", round(pred, 2))