yunuseduran commited on
Commit
7363e7c
·
verified ·
1 Parent(s): 99117c3

Upload 3 files

Browse files
Files changed (3) hide show
  1. Untitled3.xlsx +0 -0
  2. app.py +64 -0
  3. requirements.txt +0 -0
Untitled3.xlsx ADDED
Binary file (39 kB). View file
 
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import matplotlib.pyplot as plt
4
+ import warnings
5
+ warnings.filterwarnings('ignore')
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.linear_model import LinearRegression
8
+ from sklearn.metrics import mean_squared_error, r2_score
9
+ from sklearn.compose import ColumnTransformer
10
+ from sklearn.preprocessing import OneHotEncoder, StandardScaler
11
+ from sklearn.pipeline import Pipeline
12
+ import streamlit as st
13
+
14
+ # Veri okuma
15
+ df = pd.read_excel('Untitled3.xlsx')
16
+
17
+ y = df.BIST30
18
+ X = df.drop(['BIST30','Date','AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı','YiÜFE', 'USDTL',
19
+ 'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO','LnYİÜFE','LnSÜE','ZBIST30',
20
+ 'ZLnBist', 'COO_1'], axis=1)
21
+
22
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
23
+
24
+ # Ön işleme adımları
25
+ preprocess = ColumnTransformer(transformers=[
26
+ ('num', StandardScaler(), ['LnTUFE','LnİSKO','LnUSDTL','LnTGE']),
27
+ ])
28
+
29
+ # Model tanımlama
30
+ model = LinearRegression()
31
+ pipe = Pipeline(steps=[('preprocessor', preprocess), ('model', model)])
32
+
33
+ # Modeli eğitme
34
+ pipe.fit(X_train, y_train)
35
+
36
+ # Tahmin ve değerlendirme
37
+ y_pred = pipe.predict(X_test)
38
+ print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
39
+ print("R^2 Score: ", r2_score(y_test, y_pred))
40
+
41
+
42
+ def fail():
43
+ input_data = pd.DataFrame({
44
+ 'LnTufe': [LnTUFE],
45
+ 'LNİSKO': [LnİSKO],
46
+ 'LnUSDTL': [LnUSDTL],
47
+ 'LnTGE': [LnTGE]
48
+
49
+ })
50
+ prediction = pipe.predict(input_data)[0]
51
+ return prediction
52
+
53
+
54
+ st.title("Bist30 Tahmini: @YED")
55
+ st.write("Lütfen Aşağıdaki bilgileri giriniz.")
56
+ LnTUFE = st.number_input("LnTufe", 0, 10000)
57
+ LnİSKO = st.number_input("LnİSKO", 0, 10000)
58
+ LnUSDTL = st.number_input("LnUSDTL", 0, 10000)
59
+ LnTGE = st.number_input("LnTGE", 0, 10000)
60
+
61
+ if st.button("Predict"):
62
+ pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
63
+
64
+ st.write("Bist30 Tahmini :",round(pred,2))
requirements.txt ADDED
Binary file (150 Bytes). View file