Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Untitled3.xlsx +0 -0
- app.py +64 -0
- requirements.txt +0 -0
Untitled3.xlsx
ADDED
Binary file (39 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import warnings
|
5 |
+
warnings.filterwarnings('ignore')
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
9 |
+
from sklearn.compose import ColumnTransformer
|
10 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
# Veri okuma
|
15 |
+
df = pd.read_excel('Untitled3.xlsx')
|
16 |
+
|
17 |
+
y = df.BIST30
|
18 |
+
X = df.drop(['BIST30','Date','AylıkVadeliMevudatFaizOranı', 'TÜFE', 'İmalatSanayiKapasiteKullanımOranı','YiÜFE', 'USDTL',
|
19 |
+
'SanayiÜretimEndeksi', 'TüketiciGüvenEndeksi', 'LnBist', 'LnAylıkMFO','LnYİÜFE','LnSÜE','ZBIST30',
|
20 |
+
'ZLnBist', 'COO_1'], axis=1)
|
21 |
+
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
+
|
24 |
+
# Ön işleme adımları
|
25 |
+
preprocess = ColumnTransformer(transformers=[
|
26 |
+
('num', StandardScaler(), ['LnTUFE','LnİSKO','LnUSDTL','LnTGE']),
|
27 |
+
])
|
28 |
+
|
29 |
+
# Model tanımlama
|
30 |
+
model = LinearRegression()
|
31 |
+
pipe = Pipeline(steps=[('preprocessor', preprocess), ('model', model)])
|
32 |
+
|
33 |
+
# Modeli eğitme
|
34 |
+
pipe.fit(X_train, y_train)
|
35 |
+
|
36 |
+
# Tahmin ve değerlendirme
|
37 |
+
y_pred = pipe.predict(X_test)
|
38 |
+
print("Root Mean Squared Error: ", mean_squared_error(y_test, y_pred) ** 0.5)
|
39 |
+
print("R^2 Score: ", r2_score(y_test, y_pred))
|
40 |
+
|
41 |
+
|
42 |
+
def fail():
|
43 |
+
input_data = pd.DataFrame({
|
44 |
+
'LnTufe': [LnTUFE],
|
45 |
+
'LNİSKO': [LnİSKO],
|
46 |
+
'LnUSDTL': [LnUSDTL],
|
47 |
+
'LnTGE': [LnTGE]
|
48 |
+
|
49 |
+
})
|
50 |
+
prediction = pipe.predict(input_data)[0]
|
51 |
+
return prediction
|
52 |
+
|
53 |
+
|
54 |
+
st.title("Bist30 Tahmini: @YED")
|
55 |
+
st.write("Lütfen Aşağıdaki bilgileri giriniz.")
|
56 |
+
LnTUFE = st.number_input("LnTufe", 0, 10000)
|
57 |
+
LnİSKO = st.number_input("LnİSKO", 0, 10000)
|
58 |
+
LnUSDTL = st.number_input("LnUSDTL", 0, 10000)
|
59 |
+
LnTGE = st.number_input("LnTGE", 0, 10000)
|
60 |
+
|
61 |
+
if st.button("Predict"):
|
62 |
+
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
63 |
+
|
64 |
+
st.write("Bist30 Tahmini :",round(pred,2))
|
requirements.txt
ADDED
Binary file (150 Bytes). View file
|
|