Spaces:
Runtime error
Runtime error
File size: 14,926 Bytes
c953528 6bb1ad5 c953528 6bb1ad5 c953528 6bb1ad5 c953528 6bb1ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
title: Sketchpad-DepthAnything
app_file: depthanything_server.py
sdk: gradio
sdk_version: 4.39.0
---
<div align="center">
<h2>Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data</h2>
[**Lihe Yang**](https://liheyoung.github.io/)<sup>1</sup> 路 [**Bingyi Kang**](https://scholar.google.com/citations?user=NmHgX-wAAAAJ)<sup>2†</sup> 路 [**Zilong Huang**](http://speedinghzl.github.io/)<sup>2</sup> 路 [**Xiaogang Xu**](https://xiaogang00.github.io/)<sup>3,4</sup> 路 [**Jiashi Feng**](https://sites.google.com/site/jshfeng/)<sup>2</sup> 路 [**Hengshuang Zhao**](https://hszhao.github.io/)<sup>1*</sup>
<sup>1</sup>HKU    <sup>2</sup>TikTok    <sup>3</sup>CUHK    <sup>4</sup>ZJU
†project lead *corresponding author
**CVPR 2024**
<a href="https://arxiv.org/abs/2401.10891"><img src='https://img.shields.io/badge/arXiv-Depth Anything-red' alt='Paper PDF'></a>
<a href='https://depth-anything.github.io'><img src='https://img.shields.io/badge/Project_Page-Depth Anything-green' alt='Project Page'></a>
<a href='https://huggingface.co/spaces/LiheYoung/Depth-Anything'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href='https://huggingface.co/papers/2401.10891'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Paper-yellow'></a>
</div>
This work presents Depth Anything, a highly practical solution for robust monocular depth estimation by training on a combination of 1.5M labeled images and **62M+ unlabeled images**.
![teaser](assets/teaser.png)
<div align="center">
<a href="https://github.com/DepthAnything/Depth-Anything-V2"><b>Try our latest Depth Anything V2 models!</b></a><br>
</div>
## News
* **2024-06-14:** [Depth Anything V2](https://github.com/DepthAnything/Depth-Anything-V2) is released.
* **2024-02-27:** Depth Anything is accepted by CVPR 2024.
* **2024-02-05:** [Depth Anything Gallery](./gallery.md) is released. Thank all the users!
* **2024-02-02:** Depth Anything serves as the default depth processor for [InstantID](https://github.com/InstantID/InstantID) and [InvokeAI](https://github.com/invoke-ai/InvokeAI/releases/tag/v3.6.1).
* **2024-01-25:** Support [video depth visualization](./run_video.py). An [online demo for video](https://huggingface.co/spaces/JohanDL/Depth-Anything-Video) is also available.
* **2024-01-23:** The new ControlNet based on Depth Anything is integrated into [ControlNet WebUI](https://github.com/Mikubill/sd-webui-controlnet) and [ComfyUI's ControlNet](https://github.com/Fannovel16/comfyui_controlnet_aux).
* **2024-01-23:** Depth Anything [ONNX](https://github.com/fabio-sim/Depth-Anything-ONNX) and [TensorRT](https://github.com/spacewalk01/depth-anything-tensorrt) versions are supported.
* **2024-01-22:** Paper, project page, code, models, and demo ([HuggingFace](https://huggingface.co/spaces/LiheYoung/Depth-Anything), [OpenXLab](https://openxlab.org.cn/apps/detail/yyfan/depth_anything)) are released.
## Features of Depth Anything
***If you need other features, please first check [existing community supports](#community-support).***
- **Relative depth estimation**:
Our foundation models listed [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints) can provide relative depth estimation for any given image robustly. Please refer [here](#running) for details.
- **Metric depth estimation**
We fine-tune our Depth Anything model with metric depth information from NYUv2 or KITTI. It offers strong capabilities of both in-domain and zero-shot metric depth estimation. Please refer [here](./metric_depth) for details.
- **Better depth-conditioned ControlNet**
We re-train **a better depth-conditioned ControlNet** based on Depth Anything. It offers more precise synthesis than the previous MiDaS-based ControlNet. Please refer [here](./controlnet/) for details. You can also use our new ControlNet based on Depth Anything in [ControlNet WebUI](https://github.com/Mikubill/sd-webui-controlnet) or [ComfyUI's ControlNet](https://github.com/Fannovel16/comfyui_controlnet_aux).
- **Downstream high-level scene understanding**
The Depth Anything encoder can be fine-tuned to downstream high-level perception tasks, *e.g.*, semantic segmentation, 86.2 mIoU on Cityscapes and 59.4 mIoU on ADE20K. Please refer [here](./semseg/) for details.
## Performance
Here we compare our Depth Anything with the previously best MiDaS v3.1 BEiT<sub>L-512</sub> model.
Please note that the latest MiDaS is also trained on KITTI and NYUv2, while we do not.
| Method | Params | KITTI || NYUv2 || Sintel || DDAD || ETH3D || DIODE ||
|-|-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| | | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ |
| MiDaS | 345.0M | 0.127 | 0.850 | 0.048 | *0.980* | 0.587 | 0.699 | 0.251 | 0.766 | 0.139 | 0.867 | 0.075 | 0.942 |
| **Ours-S** | 24.8M | 0.080 | 0.936 | 0.053 | 0.972 | 0.464 | 0.739 | 0.247 | 0.768 | 0.127 | **0.885** | 0.076 | 0.939 |
| **Ours-B** | 97.5M | *0.080* | *0.939* | *0.046* | 0.979 | **0.432** | *0.756* | *0.232* | *0.786* | **0.126** | *0.884* | *0.069* | *0.946* |
| **Ours-L** | 335.3M | **0.076** | **0.947** | **0.043** | **0.981** | *0.458* | **0.760** | **0.230** | **0.789** | *0.127* | 0.882 | **0.066** | **0.952** |
We highlight the **best** and *second best* results in **bold** and *italic* respectively (**better results**: AbsRel $\downarrow$ , $\delta_1 \uparrow$).
## Pre-trained models
We provide three models of varying scales for robust relative depth estimation:
| Model | Params | Inference Time on V100 (ms) | A100 | RTX4090 ([TensorRT](https://github.com/spacewalk01/depth-anything-tensorrt)) |
|:-|-:|:-:|:-:|:-:|
| Depth-Anything-Small | 24.8M | 12 | 8 | 3 |
| Depth-Anything-Base | 97.5M | 13 | 9 | 6 |
| Depth-Anything-Large | 335.3M | 20 | 13 | 12 |
Note that the V100 and A100 inference time (*without TensorRT*) is computed by excluding the pre-processing and post-processing stages, whereas the last column RTX4090 (*with TensorRT*) is computed by including these two stages (please refer to [Depth-Anything-TensorRT](https://github.com/spacewalk01/depth-anything-tensorrt)).
You can easily load our pre-trained models by:
```python
from depth_anything.dpt import DepthAnything
encoder = 'vits' # can also be 'vitb' or 'vitl'
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{:}14'.format(encoder))
```
Depth Anything is also supported in [``transformers``](https://github.com/huggingface/transformers). You can use it for depth prediction within [3 lines of code](https://huggingface.co/docs/transformers/main/model_doc/depth_anything) (credit to [@niels](https://huggingface.co/nielsr)).
### *No network connection, cannot load these models?*
<details>
<summary>Click here for solutions</summary>
- First, manually download the three checkpoints: [depth-anything-large](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [depth-anything-base](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth), and [depth-anything-small](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth).
- Second, upload the folder containing the checkpoints to your remote server.
- Lastly, load the model locally:
```python
from depth_anything.dpt import DepthAnything
model_configs = {
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}
}
encoder = 'vitl' # or 'vitb', 'vits'
depth_anything = DepthAnything(model_configs[encoder])
depth_anything.load_state_dict(torch.load(f'./checkpoints/depth_anything_{encoder}14.pth'))
```
Note that in this locally loading manner, you also do not have to install the ``huggingface_hub`` package. In this way, please feel free to delete this [line](https://github.com/LiheYoung/Depth-Anything/blob/e7ef4b4b7a0afd8a05ce9564f04c1e5b68268516/depth_anything/dpt.py#L5) and the ``PyTorchModelHubMixin`` in this [line](https://github.com/LiheYoung/Depth-Anything/blob/e7ef4b4b7a0afd8a05ce9564f04c1e5b68268516/depth_anything/dpt.py#L169).
</details>
## Usage
### Installation
```bash
git clone https://github.com/LiheYoung/Depth-Anything
cd Depth-Anything
pip install -r requirements.txt
```
### Running
```bash
python run.py --encoder <vits | vitb | vitl> --img-path <img-directory | single-img | txt-file> --outdir <outdir> [--pred-only] [--grayscale]
```
Arguments:
- ``--img-path``: you can either 1) point it to an image directory storing all interested images, 2) point it to a single image, or 3) point it to a text file storing all image paths.
- ``--pred-only`` is set to save the predicted depth map only. Without it, by default, we visualize both image and its depth map side by side.
- ``--grayscale`` is set to save the grayscale depth map. Without it, by default, we apply a color palette to the depth map.
For example:
```bash
python run.py --encoder vitl --img-path assets/examples --outdir depth_vis
```
**If you want to use Depth Anything on videos:**
```bash
python run_video.py --encoder vitl --video-path assets/examples_video --outdir video_depth_vis
```
### Gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
To use our gradio demo locally:
```bash
python app.py
```
You can also try our [online demo](https://huggingface.co/spaces/LiheYoung/Depth-Anything).
### Import Depth Anything to your project
If you want to use Depth Anything in your own project, you can simply follow [``run.py``](run.py) to load our models and define data pre-processing.
<details>
<summary>Code snippet (note the difference between our data pre-processing and that of MiDaS)</summary>
```python
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
import cv2
import torch
from torchvision.transforms import Compose
encoder = 'vits' # can also be 'vitb' or 'vitl'
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{:}14'.format(encoder)).eval()
transform = Compose([
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method='lower_bound',
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
])
image = cv2.cvtColor(cv2.imread('your image path'), cv2.COLOR_BGR2RGB) / 255.0
image = transform({'image': image})['image']
image = torch.from_numpy(image).unsqueeze(0)
# depth shape: 1xHxW
depth = depth_anything(image)
```
</details>
### Do not want to define image pre-processing or download model definition files?
Easily use Depth Anything through [``transformers``](https://github.com/huggingface/transformers) within 3 lines of code! Please refer to [these instructions](https://huggingface.co/docs/transformers/main/model_doc/depth_anything) (credit to [@niels](https://huggingface.co/nielsr)).
**Note:** If you encounter ``KeyError: 'depth_anything'``, please install the latest [``transformers``](https://github.com/huggingface/transformers) from source:
```bash
pip install git+https://github.com/huggingface/transformers.git
```
<details>
<summary>Click here for a brief demo:</summary>
```python
from transformers import pipeline
from PIL import Image
image = Image.open('Your-image-path')
pipe = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-small-hf")
depth = pipe(image)["depth"]
```
</details>
## Community Support
**We sincerely appreciate all the extensions built on our Depth Anything from the community. Thank you a lot!**
Here we list the extensions we have found:
- Depth Anything TensorRT:
- https://github.com/spacewalk01/depth-anything-tensorrt
- https://github.com/thinvy/DepthAnythingTensorrtDeploy
- https://github.com/daniel89710/trt-depth-anything
- Depth Anything ONNX: https://github.com/fabio-sim/Depth-Anything-ONNX
- Depth Anything in Transformers.js (3D visualization): https://huggingface.co/spaces/Xenova/depth-anything-web
- Depth Anything for video (online demo): https://huggingface.co/spaces/JohanDL/Depth-Anything-Video
- Depth Anything in ControlNet WebUI: https://github.com/Mikubill/sd-webui-controlnet
- Depth Anything in ComfyUI's ControlNet: https://github.com/Fannovel16/comfyui_controlnet_aux
- Depth Anything in X-AnyLabeling: https://github.com/CVHub520/X-AnyLabeling
- Depth Anything in OpenXLab: https://openxlab.org.cn/apps/detail/yyfan/depth_anything
- Depth Anything in OpenVINO: https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/280-depth-anything
- Depth Anything ROS:
- https://github.com/scepter914/DepthAnything-ROS
- https://github.com/polatztrk/depth_anything_ros
- Depth Anything Android:
- https://github.com/FeiGeChuanShu/ncnn-android-depth_anything
- https://github.com/shubham0204/Depth-Anything-Android
- Depth Anything in TouchDesigner: https://github.com/olegchomp/TDDepthAnything
- LearnOpenCV research article on Depth Anything: https://learnopencv.com/depth-anything
- Learn more about the DPT architecture we used: https://github.com/heyoeyo/muggled_dpt
- Depth Anything in NVIDIA Jetson Orin: https://github.com/ZhuYaoHui1998/jetson-examples/blob/main/reComputer/scripts/depth-anything
If you have your amazing projects supporting or improving (*e.g.*, speed) Depth Anything, please feel free to drop an issue. We will add them here.
## Acknowledgement
We would like to express our deepest gratitude to [AK(@_akhaliq)](https://twitter.com/_akhaliq) and the awesome HuggingFace team ([@niels](https://huggingface.co/nielsr), [@hysts](https://huggingface.co/hysts), and [@yuvraj](https://huggingface.co/ysharma)) for helping improve the online demo and build the HF models.
Besides, we thank the [MagicEdit](https://magic-edit.github.io/) team for providing some video examples for video depth estimation, and [Tiancheng Shen](https://scholar.google.com/citations?user=iRY1YVoAAAAJ) for evaluating the depth maps with MagicEdit.
## Citation
If you find this project useful, please consider citing:
```bibtex
@inproceedings{depthanything,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
booktitle={CVPR},
year={2024}
}
```
|