Spaces:
Runtime error
Runtime error
# Born out of Issue 36. | |
# Allows the user to set up own test files to infer on (Create a folder my_test and add subfolder input and output in the metric_depth directory before running this script.) | |
# Make sure you have the necessary libraries | |
# Code by @1ssb | |
import argparse | |
import os | |
import glob | |
import torch | |
import numpy as np | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import open3d as o3d | |
from tqdm import tqdm | |
from zoedepth.models.builder import build_model | |
from zoedepth.utils.config import get_config | |
# Global settings | |
FL = 715.0873 | |
FY = 256 * 0.6 | |
FX = 256 * 0.6 | |
NYU_DATA = False | |
FINAL_HEIGHT = 256 | |
FINAL_WIDTH = 256 | |
INPUT_DIR = './my_test/input' | |
OUTPUT_DIR = './my_test/output' | |
DATASET = 'nyu' # Lets not pick a fight with the model's dataloader | |
def process_images(model): | |
if not os.path.exists(OUTPUT_DIR): | |
os.makedirs(OUTPUT_DIR) | |
image_paths = glob.glob(os.path.join(INPUT_DIR, '*.png')) + glob.glob(os.path.join(INPUT_DIR, '*.jpg')) | |
for image_path in tqdm(image_paths, desc="Processing Images"): | |
try: | |
color_image = Image.open(image_path).convert('RGB') | |
original_width, original_height = color_image.size | |
image_tensor = transforms.ToTensor()(color_image).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu') | |
pred = model(image_tensor, dataset=DATASET) | |
if isinstance(pred, dict): | |
pred = pred.get('metric_depth', pred.get('out')) | |
elif isinstance(pred, (list, tuple)): | |
pred = pred[-1] | |
pred = pred.squeeze().detach().cpu().numpy() | |
# Resize color image and depth to final size | |
resized_color_image = color_image.resize((FINAL_WIDTH, FINAL_HEIGHT), Image.LANCZOS) | |
resized_pred = Image.fromarray(pred).resize((FINAL_WIDTH, FINAL_HEIGHT), Image.NEAREST) | |
focal_length_x, focal_length_y = (FX, FY) if not NYU_DATA else (FL, FL) | |
x, y = np.meshgrid(np.arange(FINAL_WIDTH), np.arange(FINAL_HEIGHT)) | |
x = (x - FINAL_WIDTH / 2) / focal_length_x | |
y = (y - FINAL_HEIGHT / 2) / focal_length_y | |
z = np.array(resized_pred) | |
points = np.stack((np.multiply(x, z), np.multiply(y, z), z), axis=-1).reshape(-1, 3) | |
colors = np.array(resized_color_image).reshape(-1, 3) / 255.0 | |
pcd = o3d.geometry.PointCloud() | |
pcd.points = o3d.utility.Vector3dVector(points) | |
pcd.colors = o3d.utility.Vector3dVector(colors) | |
o3d.io.write_point_cloud(os.path.join(OUTPUT_DIR, os.path.splitext(os.path.basename(image_path))[0] + ".ply"), pcd) | |
except Exception as e: | |
print(f"Error processing {image_path}: {e}") | |
def main(model_name, pretrained_resource): | |
config = get_config(model_name, "eval", DATASET) | |
config.pretrained_resource = pretrained_resource | |
model = build_model(config).to('cuda' if torch.cuda.is_available() else 'cpu') | |
model.eval() | |
process_images(model) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-m", "--model", type=str, default='zoedepth', help="Name of the model to test") | |
parser.add_argument("-p", "--pretrained_resource", type=str, default='local::./checkpoints/depth_anything_metric_depth_indoor.pt', help="Pretrained resource to use for fetching weights.") | |
args = parser.parse_args() | |
main(args.model, args.pretrained_resource) | |