Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
from depth_anything.dpt import DepthAnything | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
transform = Compose([ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(DEVICE).eval() | |
def predict_depthmap(image): | |
original_image = image.copy() | |
h, w = image.shape[:2] | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
image = transform({'image': image})['image'] | |
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
with torch.no_grad(): | |
depth = model(image) | |
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth = depth.cpu().numpy().astype(np.uint8) | |
colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
# colored_depth = Image.fromarray(cv2.cvtColor(colored_depth, cv2.COLOR_BGR2RGB)) | |
corlored_depth = Image.fromarray(colored_depth) | |
return colored_depth | |
demo = gr.Interface(fn=predict_depthmap, inputs=[gr.Image()], | |
outputs=[gr.Image(type="pil")] | |
) | |
demo.launch() | |