# Depth Anything for Metric Depth Estimation Our Depth Anything models primarily focus on robust *relative* depth estimation. To achieve *metric* depth estimation, we follow ZoeDepth to fine-tune from our Depth Anything pre-trained encoder with metric depth information from NYUv2 or KITTI. ## Performance ### *In-domain* metric depth estimation #### NYUv2 | Method | $\delta_1 \uparrow$ | $\delta_2 \uparrow$ | $\delta_3 \uparrow$ | AbsRel $\downarrow$ | RMSE $\downarrow$ | log10 $\downarrow$ | |:-:|:-:|:-:|:-:|:-:|:-:|:-:| | ZoeDepth | 0.951 | 0.994 | 0.999 | 0.077 | 0.282 | 0.033 | | Depth Anything | **0.984** | **0.998** | **1.000** | **0.056** | **0.206** | **0.024** | #### KITTI | Method | $\delta_1 \uparrow$ | $\delta_2 \uparrow$ | $\delta_3 \uparrow$ | AbsRel $\downarrow$ | RMSE $\downarrow$ | log10 $\downarrow$ | |:-:|:-:|:-:|:-:|:-:|:-:|:-:| | ZoeDepth | 0.971 | 0.996 | 0.999 | 0.054 | 2.281 | 0.082 | | Depth Anything | **0.982** | **0.998** | **1.000** | **0.046** | **1.896** | **0.069** | ### *Zero-shot* metric depth estimation Indoor: NYUv2 $\rightarrow$ SUN RGB-D, iBims-1, and HyperSim
Outdoor: KITTI $\rightarrow$ Virtual KITTI 2 and DIODE Outdoor | Method | SUN || iBims || HyperSim || vKITTI || DIODE Outdoor || |-|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| | | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | | ZoeDepth | 0.520 | 0.545 | 0.169 | 0.656 | 0.407 | 0.302 | 0.106 | 0.844 | 0.814 | 0.237 | | Depth Anything | **0.500** | **0.660** | **0.150** | **0.714** | **0.363** | **0.361** | **0.085** | **0.913** | **0.794** | **0.288** | ## Pre-trained metric depth estimation models We provide [two pre-trained models](https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints_metric_depth), one for *indoor* metric depth estimation trained on NYUv2, and the other for *outdoor* metric depth estimation trained on KITTI. ## Installation ```bash conda env create -n depth_anything_metric --file environment.yml conda activate depth_anything_metric ``` Please follow [ZoeDepth](https://github.com/isl-org/ZoeDepth) to prepare the training and test datasets. ## Evaluation Make sure you have downloaded our pre-trained metric-depth models [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints_metric_depth) (for evaluation) and pre-trained relative-depth model [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth) (for initializing the encoder) and put them under the ``checkpoints`` directory. Indoor: ```bash python evaluate.py -m zoedepth --pretrained_resource="local::./checkpoints/depth_anything_metric_depth_indoor.pt" -d ``` Outdoor: ```bash python evaluate.py -m zoedepth --pretrained_resource="local::./checkpoints/depth_anything_metric_depth_outdoor.pt" -d ``` ## Training Please first download our Depth Anything pre-trained model [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), and put it under the ``checkpoints`` directory. ```bash python train_mono.py -m zoedepth -d --pretrained_resource="" ``` This will automatically use our Depth Anything pre-trained ViT-L encoder. ## Citation If you find this project useful, please consider citing: ```bibtex @article{depthanything, title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang}, journal={arXiv:2401.10891}, year={2024}, } ```