# Depth Anything for Metric Depth Estimation
Our Depth Anything models primarily focus on robust *relative* depth estimation. To achieve *metric* depth estimation, we follow ZoeDepth to fine-tune from our Depth Anything pre-trained encoder with metric depth information from NYUv2 or KITTI.
## Performance
### *In-domain* metric depth estimation
#### NYUv2
| Method | $\delta_1 \uparrow$ | $\delta_2 \uparrow$ | $\delta_3 \uparrow$ | AbsRel $\downarrow$ | RMSE $\downarrow$ | log10 $\downarrow$ |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ZoeDepth | 0.951 | 0.994 | 0.999 | 0.077 | 0.282 | 0.033 |
| Depth Anything | **0.984** | **0.998** | **1.000** | **0.056** | **0.206** | **0.024** |
#### KITTI
| Method | $\delta_1 \uparrow$ | $\delta_2 \uparrow$ | $\delta_3 \uparrow$ | AbsRel $\downarrow$ | RMSE $\downarrow$ | log10 $\downarrow$ |
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| ZoeDepth | 0.971 | 0.996 | 0.999 | 0.054 | 2.281 | 0.082 |
| Depth Anything | **0.982** | **0.998** | **1.000** | **0.046** | **1.896** | **0.069** |
### *Zero-shot* metric depth estimation
Indoor: NYUv2 $\rightarrow$ SUN RGB-D, iBims-1, and HyperSim
Outdoor: KITTI $\rightarrow$ Virtual KITTI 2 and DIODE Outdoor
| Method | SUN || iBims || HyperSim || vKITTI || DIODE Outdoor ||
|-|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ | AbsRel | $\delta_1$ |
| ZoeDepth | 0.520 | 0.545 | 0.169 | 0.656 | 0.407 | 0.302 | 0.106 | 0.844 | 0.814 | 0.237 |
| Depth Anything | **0.500** | **0.660** | **0.150** | **0.714** | **0.363** | **0.361** | **0.085** | **0.913** | **0.794** | **0.288** |
## Pre-trained metric depth estimation models
We provide [two pre-trained models](https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints_metric_depth), one for *indoor* metric depth estimation trained on NYUv2, and the other for *outdoor* metric depth estimation trained on KITTI.
## Installation
```bash
conda env create -n depth_anything_metric --file environment.yml
conda activate depth_anything_metric
```
Please follow [ZoeDepth](https://github.com/isl-org/ZoeDepth) to prepare the training and test datasets.
## Evaluation
Make sure you have downloaded our pre-trained metric-depth models [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/tree/main/checkpoints_metric_depth) (for evaluation) and pre-trained relative-depth model [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth) (for initializing the encoder) and put them under the ``checkpoints`` directory.
Indoor:
```bash
python evaluate.py -m zoedepth --pretrained_resource="local::./checkpoints/depth_anything_metric_depth_indoor.pt" -d
```
Outdoor:
```bash
python evaluate.py -m zoedepth --pretrained_resource="local::./checkpoints/depth_anything_metric_depth_outdoor.pt" -d
```
## Training
Please first download our Depth Anything pre-trained model [here](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), and put it under the ``checkpoints`` directory.
```bash
python train_mono.py -m zoedepth -d --pretrained_resource=""
```
This will automatically use our Depth Anything pre-trained ViT-L encoder.
## Citation
If you find this project useful, please consider citing:
```bibtex
@article{depthanything,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
journal={arXiv:2401.10891},
year={2024},
}
```