Spaces:
Configuration error
Configuration error
File size: 10,862 Bytes
6a05036 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import copy
import torch
from safetensors import safe_open
from garment_seg.process import load_seg_model, generate_mask
from utils.utils import is_torch2_available, prepare_image, prepare_mask
from diffusers import UNet2DConditionModel
if is_torch2_available():
from .attention_processor import REFAttnProcessor2_0 as REFAttnProcessor
from .attention_processor import AttnProcessor2_0 as AttnProcessor
from .attention_processor import REFAnimateDiffAttnProcessor2_0 as REFAnimateDiffAttnProcessor
else:
from .attention_processor import REFAttnProcessor, AttnProcessor
class ClothAdapter:
def __init__(self, sd_pipe, ref_path, device, enable_cloth_guidance, set_seg_model=True):
self.enable_cloth_guidance = enable_cloth_guidance
self.device = device
self.pipe = sd_pipe.to(self.device)
self.set_adapter(self.pipe.unet, "write")
print(ref_path)
ref_unet = copy.deepcopy(sd_pipe.unet)
if ref_unet.config.in_channels == 9:
ref_unet.conv_in = torch.nn.Conv2d(4, 320, ref_unet.conv_in.kernel_size, ref_unet.conv_in.stride, ref_unet.conv_in.padding)
ref_unet.register_to_config(in_channels=4)
state_dict = {}
with safe_open(ref_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
ref_unet.load_state_dict(state_dict, strict=False)
self.ref_unet = ref_unet.to(self.device, dtype=self.pipe.dtype)
self.set_adapter(self.ref_unet, "read")
if set_seg_model:
self.set_seg_model()
self.attn_store = {}
def set_seg_model(self, ):
checkpoint_path = 'checkpoints/cloth_segm.pth'
self.seg_net = load_seg_model(checkpoint_path, device=self.device)
def set_adapter(self, unet, type):
attn_procs = {}
for name in unet.attn_processors.keys():
if "attn1" in name:
attn_procs[name] = REFAttnProcessor(name=name, type=type)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(attn_procs)
def generate(
self,
cloth_image,
cloth_mask_image=None,
prompt=None,
a_prompt="best quality, high quality",
num_images_per_prompt=4,
negative_prompt=None,
seed=-1,
guidance_scale=7.5,
cloth_guidance_scale=2.5,
num_inference_steps=20,
height=512,
width=384,
**kwargs,
):
if cloth_mask_image is None:
cloth_mask_image = generate_mask(cloth_image, net=self.seg_net, device=self.device)
cloth = prepare_image(cloth_image, height, width)
cloth_mask = prepare_mask(cloth_mask_image, height, width)
cloth = (cloth * cloth_mask).to(self.device, dtype=torch.float16)
if prompt is None:
prompt = "a photography of a model"
prompt = prompt + ", " + a_prompt
if negative_prompt is None:
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
prompt_embeds, negative_prompt_embeds = self.pipe.encode_prompt(
prompt,
device=self.device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds_null = self.pipe.encode_prompt([""], device=self.device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False)[0]
cloth_embeds = self.pipe.vae.encode(cloth).latent_dist.mode() * self.pipe.vae.config.scaling_factor
self.ref_unet(torch.cat([cloth_embeds] * num_images_per_prompt), 0, prompt_embeds_null, cross_attention_kwargs={"attn_store": self.attn_store})
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
if self.enable_cloth_guidance:
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
cloth_guidance_scale=cloth_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
height=height,
width=width,
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0, "enable_cloth_guidance": self.enable_cloth_guidance},
**kwargs,
).images
else:
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
height=height,
width=width,
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0, "enable_cloth_guidance": self.enable_cloth_guidance},
**kwargs,
).images
return images, cloth_mask_image
def generate_inpainting(
self,
cloth_image,
cloth_mask_image=None,
num_images_per_prompt=4,
seed=-1,
cloth_guidance_scale=2.5,
num_inference_steps=20,
height=512,
width=384,
**kwargs,
):
if cloth_mask_image is None:
cloth_mask_image = generate_mask(cloth_image, net=self.seg_net, device=self.device)
cloth = prepare_image(cloth_image, height, width)
cloth_mask = prepare_mask(cloth_mask_image, height, width)
cloth = (cloth * cloth_mask).to(self.device, dtype=torch.float16)
with torch.inference_mode():
prompt_embeds_null = self.pipe.encode_prompt([""], device=self.device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False)[0]
cloth_embeds = self.pipe.vae.encode(cloth).latent_dist.mode() * self.pipe.vae.config.scaling_factor
self.ref_unet(torch.cat([cloth_embeds] * num_images_per_prompt), 0, prompt_embeds_null, cross_attention_kwargs={"attn_store": self.attn_store})
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
images = self.pipe(
prompt_embeds=prompt_embeds_null,
cloth_guidance_scale=cloth_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
height=height,
width=width,
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": cloth_guidance_scale > 1.0, "enable_cloth_guidance": False},
**kwargs,
).images
return images, cloth_mask_image
class ClothAdapter_AnimateDiff:
def __init__(self, sd_pipe, pipe_path, ref_path, device, set_seg_model=True):
self.device = device
self.pipe = sd_pipe.to(self.device)
self.set_adapter(self.pipe.unet, "write")
ref_unet = UNet2DConditionModel.from_pretrained(pipe_path, subfolder='unet', torch_dtype=sd_pipe.dtype)
state_dict = {}
with safe_open(ref_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
ref_unet.load_state_dict(state_dict, strict=False)
self.ref_unet = ref_unet.to(self.device)
self.set_adapter(self.ref_unet, "read")
if set_seg_model:
self.set_seg_model()
self.attn_store = {}
def set_seg_model(self, ):
checkpoint_path = 'checkpoints/cloth_segm.pth'
self.seg_net = load_seg_model(checkpoint_path, device=self.device)
def set_adapter(self, unet, type):
attn_procs = {}
for name in unet.attn_processors.keys():
if "attn1" in name and "motion_modules" not in name:
attn_procs[name] = REFAnimateDiffAttnProcessor(name=name, type=type)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(attn_procs)
def generate(
self,
cloth_image,
cloth_mask_image=None,
prompt=None,
a_prompt="best quality, high quality",
num_images_per_prompt=4,
negative_prompt=None,
seed=-1,
guidance_scale=7.5,
cloth_guidance_scale=3.,
num_inference_steps=20,
height=512,
width=384,
**kwargs,
):
if cloth_mask_image is None:
cloth_mask_image = generate_mask(cloth_image, net=self.seg_net, device=self.device)
cloth = prepare_image(cloth_image, height, width)
cloth_mask = prepare_mask(cloth_mask_image, height, width)
cloth = (cloth * cloth_mask).to(self.device, dtype=torch.float16)
if prompt is None:
prompt = "a photography of a model"
prompt = prompt + ", " + a_prompt
if negative_prompt is None:
negative_prompt = "bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality"
with torch.inference_mode():
prompt_embeds, negative_prompt_embeds = self.pipe.encode_prompt(
prompt,
device=self.device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
prompt_embeds_null = self.pipe.encode_prompt([""], device=self.device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=False)[0]
cloth_embeds = self.pipe.vae.encode(cloth).latent_dist.mode() * self.pipe.vae.config.scaling_factor
self.ref_unet(torch.cat([cloth_embeds] * num_images_per_prompt), 0, prompt_embeds_null, cross_attention_kwargs={"attn_store": self.attn_store})
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
frames = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=guidance_scale,
cloth_guidance_scale=cloth_guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
height=height,
width=width,
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0},
**kwargs,
).frames
return frames, cloth_mask_image
|