Spaces:
Configuration error
Configuration error
import os | |
import pdb | |
from typing import List | |
import numpy as np | |
import torch | |
from safetensors import safe_open | |
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
from garment_seg.process import load_seg_model, generate_mask | |
from utils.utils import is_torch2_available, prepare_image, prepare_mask | |
import copy | |
from utils.resampler import PerceiverAttention, FeedForward | |
from insightface.utils import face_align | |
from insightface.app import FaceAnalysis | |
import cv2 | |
USE_DAFAULT_ATTN = False # should be True for visualization_attnmap | |
if is_torch2_available() and (not USE_DAFAULT_ATTN): | |
from .attention_processor import AttnProcessor2_0 as AttnProcessor | |
from .attention_processor import IPAttnProcessor2_0 as IPAttnProcessor | |
from .attention_processor import REFAttnProcessor2_0 as REFAttnProcessor | |
else: | |
from .attention_processor import AttnProcessor, IPAttnProcessor, REFAttnProcessor | |
class FacePerceiverResampler(torch.nn.Module): | |
def __init__( | |
self, | |
*, | |
dim=768, | |
depth=4, | |
dim_head=64, | |
heads=16, | |
embedding_dim=1280, | |
output_dim=768, | |
ff_mult=4, | |
): | |
super().__init__() | |
self.proj_in = torch.nn.Linear(embedding_dim, dim) | |
self.proj_out = torch.nn.Linear(dim, output_dim) | |
self.norm_out = torch.nn.LayerNorm(output_dim) | |
self.layers = torch.nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append( | |
torch.nn.ModuleList( | |
[ | |
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), | |
FeedForward(dim=dim, mult=ff_mult), | |
] | |
) | |
) | |
def forward(self, latents, x): | |
x = self.proj_in(x) | |
for attn, ff in self.layers: | |
latents = attn(x, latents) + latents | |
latents = ff(latents) + latents | |
latents = self.proj_out(latents) | |
return self.norm_out(latents) | |
class MLPProjModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, id_embeds): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
return x | |
class ProjPlusModel(torch.nn.Module): | |
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.num_tokens = num_tokens | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2), | |
torch.nn.GELU(), | |
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens), | |
) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
self.perceiver_resampler = FacePerceiverResampler( | |
dim=cross_attention_dim, | |
depth=4, | |
dim_head=64, | |
heads=cross_attention_dim // 64, | |
embedding_dim=clip_embeddings_dim, | |
output_dim=cross_attention_dim, | |
ff_mult=4, | |
) | |
def forward(self, id_embeds, clip_embeds, shortcut=False, scale=1.0): | |
x = self.proj(id_embeds) | |
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) | |
x = self.norm(x) | |
out = self.perceiver_resampler(x, clip_embeds) | |
if shortcut: | |
out = x + scale * out | |
return out | |
class IPAdapterFaceID: | |
def __init__(self, sd_pipe, ref_path, ip_ckpt, device, enable_cloth_guidance, num_tokens=4, n_cond=1, torch_dtype=torch.float16, set_seg_model=True): | |
self.enable_cloth_guidance = enable_cloth_guidance | |
self.device = device | |
self.ip_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.n_cond = n_cond | |
self.torch_dtype = torch_dtype | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
self.set_insightface() | |
ref_unet = copy.deepcopy(sd_pipe.unet) | |
state_dict = {} | |
with safe_open(ref_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
ref_unet.load_state_dict(state_dict, strict=False) | |
self.ref_unet = ref_unet.to(self.device) | |
self.set_ref_adapter() | |
if set_seg_model: | |
self.set_seg_model() | |
self.attn_store = {} | |
def set_insightface(self): | |
self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
def set_seg_model(self, ): | |
checkpoint_path = 'checkpoints/cloth_segm.pth' | |
self.seg_net = load_seg_model(checkpoint_path, device=self.device) | |
def init_proj(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
id_embeddings_dim=512, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
return image_proj_model | |
def set_ref_adapter(self): | |
attn_procs = {} | |
for name in self.ref_unet.attn_processors.keys(): | |
if "attn1" in name: | |
attn_procs[name] = REFAttnProcessor(name=name, type="read") | |
else: | |
attn_procs[name] = AttnProcessor() | |
self.ref_unet.set_attn_processor(attn_procs) | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = REFAttnProcessor(name=name, type="write") | |
else: | |
attn_procs[name] = IPAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens * self.n_cond, | |
).to(self.device, dtype=self.torch_dtype) | |
unet.set_attn_processor(attn_procs) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
def get_image_embeds(self, faceid_embeds): | |
multi_face = False | |
if faceid_embeds.dim() == 3: | |
multi_face = True | |
b, n, c = faceid_embeds.shape | |
faceid_embeds = faceid_embeds.reshape(b * n, c) | |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
image_prompt_embeds = self.image_proj_model(faceid_embeds) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds)) | |
if multi_face: | |
c = image_prompt_embeds.size(-1) | |
image_prompt_embeds = image_prompt_embeds.reshape(b, -1, c) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.reshape(b, -1, c) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
cloth_image, | |
face_image, | |
cloth_mask=None, | |
prompt=None, | |
a_prompt="best quality, high quality", | |
negative_prompt=None, | |
num_samples=4, | |
seed=None, | |
guidance_scale=3., | |
cloth_guidance_scale=3., | |
num_inference_steps=30, | |
height=512, | |
width=384, | |
scale=1.0, | |
**kwargs, | |
): | |
faces = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR)) | |
try: | |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
except: | |
return None | |
if cloth_mask is None: | |
cloth_mask_image = generate_mask(cloth_image, net=self.seg_net, device=self.device) | |
cloth = prepare_image(cloth_image, height, width) | |
cloth_mask = prepare_mask(cloth_mask_image, height, width) | |
cloth = (cloth * cloth_mask).to(self.device, dtype=torch.float16) | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "a photography of a model" | |
prompt = prompt + ", " + a_prompt | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
prompt_embeds_null = self.pipe.encode_prompt([""], device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=False)[0] | |
cloth_embeds = self.pipe.vae.encode(cloth).latent_dist.mode() * self.pipe.vae.config.scaling_factor | |
self.ref_unet(torch.cat([cloth_embeds] * num_samples), 0, prompt_embeds_null, cross_attention_kwargs={"attn_store": self.attn_store}) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0, "enable_cloth_guidance": self.enable_cloth_guidance}, | |
**kwargs, | |
).images | |
return images, cloth_mask_image | |
class IPAdapterFaceIDPlus: | |
def __init__(self, sd_pipe, ref_path, image_encoder_path, ip_ckpt, device, enable_cloth_guidance, num_tokens=4, torch_dtype=torch.float16, set_seg_model=True): | |
self.enable_cloth_guidance = enable_cloth_guidance | |
self.device = device | |
self.image_encoder_path = image_encoder_path | |
self.ip_ckpt = ip_ckpt | |
self.num_tokens = num_tokens | |
self.torch_dtype = torch_dtype | |
self.pipe = sd_pipe.to(self.device) | |
self.set_ip_adapter() | |
# load image encoder | |
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to( | |
self.device, dtype=self.torch_dtype | |
) | |
self.clip_image_processor = CLIPImageProcessor() | |
# image proj model | |
self.image_proj_model = self.init_proj() | |
self.load_ip_adapter() | |
self.set_insightface() | |
ref_unet = copy.deepcopy(sd_pipe.unet) | |
state_dict = {} | |
with safe_open(ref_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
ref_unet.load_state_dict(state_dict, strict=False) | |
self.ref_unet = ref_unet.to(self.device) | |
self.set_ref_adapter() | |
if set_seg_model: | |
self.set_seg_model() | |
self.attn_store = {} | |
def set_insightface(self): | |
self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.app.prepare(ctx_id=0, det_size=(640, 640)) | |
def set_seg_model(self, ): | |
checkpoint_path = 'checkpoints/cloth_segm.pth' | |
self.seg_net = load_seg_model(checkpoint_path, device=self.device) | |
def init_proj(self): | |
image_proj_model = ProjPlusModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
id_embeddings_dim=512, | |
clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
return image_proj_model | |
def set_ref_adapter(self): | |
attn_procs = {} | |
for name in self.ref_unet.attn_processors.keys(): | |
if "attn1" in name: | |
attn_procs[name] = REFAttnProcessor(name=name, type="read") | |
else: | |
attn_procs[name] = AttnProcessor() | |
self.ref_unet.set_attn_processor(attn_procs) | |
def set_ip_adapter(self): | |
unet = self.pipe.unet | |
attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = unet.config.block_out_channels[block_id] | |
if cross_attention_dim is None: | |
attn_procs[name] = REFAttnProcessor(name=name, type="write") | |
else: | |
attn_procs[name] = IPAttnProcessor( | |
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0, num_tokens=self.num_tokens, | |
).to(self.device, dtype=self.torch_dtype) | |
unet.set_attn_processor(attn_procs) | |
def load_ip_adapter(self): | |
if os.path.splitext(self.ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(self.ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(self.ip_ckpt, map_location="cpu") | |
self.image_proj_model.load_state_dict(state_dict["image_proj"]) | |
ip_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values()) | |
ip_layers.load_state_dict(state_dict["ip_adapter"], strict=False) | |
def get_image_embeds(self, faceid_embeds, face_image, s_scale, shortcut): | |
clip_image = self.clip_image_processor(images=face_image, return_tensors="pt").pixel_values | |
clip_image = clip_image.to(self.device, dtype=self.torch_dtype) | |
clip_image_embeds = self.image_encoder(clip_image, output_hidden_states=True).hidden_states[-2] | |
uncond_clip_image_embeds = self.image_encoder( | |
torch.zeros_like(clip_image), output_hidden_states=True | |
).hidden_states[-2] | |
faceid_embeds = faceid_embeds.to(self.device, dtype=self.torch_dtype) | |
image_prompt_embeds = self.image_proj_model(faceid_embeds, clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(faceid_embeds), uncond_clip_image_embeds, shortcut=shortcut, scale=s_scale) | |
return image_prompt_embeds, uncond_image_prompt_embeds | |
def set_scale(self, scale): | |
for attn_processor in self.pipe.unet.attn_processors.values(): | |
if isinstance(attn_processor, IPAttnProcessor): | |
attn_processor.scale = scale | |
def generate( | |
self, | |
cloth_image, | |
face_image, | |
cloth_mask=None, | |
prompt=None, | |
a_prompt="best quality, high quality", | |
negative_prompt=None, | |
num_samples=4, | |
seed=None, | |
guidance_scale=2.5, | |
cloth_guidance_scale=2.5, | |
num_inference_steps=20, | |
height=512, | |
width=384, | |
scale=1.0, | |
s_scale=1., | |
shortcut=False, | |
**kwargs, | |
): | |
face_image = cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR) | |
faces = self.app.get(face_image) | |
try: | |
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0) | |
face_image = face_align.norm_crop(face_image, landmark=faces[0].kps, image_size=224) | |
except: | |
return None | |
if cloth_mask is None: | |
cloth_mask_image = generate_mask(cloth_image, net=self.seg_net, device=self.device) | |
cloth = prepare_image(cloth_image, height, width) | |
cloth_mask = prepare_mask(cloth_mask_image, height, width) | |
cloth = (cloth * cloth_mask).to(self.device, dtype=torch.float16) | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "a photography of a model" | |
prompt = prompt + ", " + a_prompt | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
prompt_embeds_, negative_prompt_embeds_ = self.pipe.encode_prompt( | |
prompt, | |
device=self.device, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds_, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_image_prompt_embeds], dim=1) | |
prompt_embeds_null = self.pipe.encode_prompt([""], device=self.device, num_images_per_prompt=num_samples, do_classifier_free_guidance=False)[0] | |
cloth_embeds = self.pipe.vae.encode(cloth).latent_dist.mode() * self.pipe.vae.config.scaling_factor | |
self.ref_unet(torch.cat([cloth_embeds] * num_samples), 0, prompt_embeds_null, cross_attention_kwargs={"attn_store": self.attn_store}) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
if self.enable_cloth_guidance: | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
cloth_guidance_scale=cloth_guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0, "enable_cloth_guidance": self.enable_cloth_guidance}, | |
**kwargs, | |
).images | |
else: | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
height=height, | |
width=width, | |
cross_attention_kwargs={"attn_store": self.attn_store, "do_classifier_free_guidance": guidance_scale > 1.0, "enable_cloth_guidance": self.enable_cloth_guidance}, | |
**kwargs, | |
).images | |
return images, cloth_mask_image | |
class IPAdapterFaceIDXL(IPAdapterFaceID): | |
"""SDXL""" | |
def generate( | |
self, | |
faceid_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
num_inference_steps=30, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
**kwargs, | |
).images | |
return images | |
class IPAdapterFaceIDPlusXL(IPAdapterFaceIDPlus): | |
"""SDXL""" | |
def generate( | |
self, | |
face_image=None, | |
faceid_embeds=None, | |
prompt=None, | |
negative_prompt=None, | |
scale=1.0, | |
num_samples=4, | |
seed=None, | |
guidance_scale=7.5, | |
num_inference_steps=30, | |
s_scale=1.0, | |
shortcut=True, | |
**kwargs, | |
): | |
self.set_scale(scale) | |
num_prompts = faceid_embeds.size(0) | |
if prompt is None: | |
prompt = "best quality, high quality" | |
if negative_prompt is None: | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * num_prompts | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * num_prompts | |
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds(faceid_embeds, face_image, s_scale, shortcut) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt_embeds = torch.cat([prompt_embeds, image_prompt_embeds], dim=1) | |
negative_prompt_embeds = torch.cat([negative_prompt_embeds, uncond_image_prompt_embeds], dim=1) | |
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None | |
images = self.pipe( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
**kwargs, | |
).images | |
return images | |