zayeem00 commited on
Commit
68bc4b5
·
verified ·
1 Parent(s): 467b869

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -180
app.py DELETED
@@ -1,180 +0,0 @@
1
- import openai
2
- from pinecone import Pinecone, ServerlessSpec
3
- import pandas as pd
4
- import gradio as gr
5
- from typing import List, Tuple
6
-
7
- # Function to get embeddings from OpenAI's model
8
- def get_embedding(text: str, openai_api_key: str, model: str = "text-embedding-ada-002") -> List[float]:
9
- openai.api_key = openai_api_key
10
- try:
11
- response = openai.Embedding.create(
12
- model=model,
13
- input=text
14
- )
15
- return response['data'][0]['embedding']
16
- except Exception as e:
17
- print(f"Error getting embedding: {e}")
18
- return []
19
-
20
- # Function to process the uploaded CSV and store embeddings in Pinecone
21
- def process_csv(file, openai_api_key: str, pinecone_api_key: str, pinecone_env: str) -> str:
22
- try:
23
- df = pd.read_csv(file.name)
24
-
25
- # Initialize Pinecone
26
- pc = Pinecone(api_key=pinecone_api_key)
27
- index_name = "product-recommendations"
28
-
29
- # Check if index exists
30
- if index_name not in pc.list_indexes().names():
31
- try:
32
- pc.create_index(
33
- name=index_name,
34
- dimension=1536,
35
- spec=ServerlessSpec(cloud="aws", region=pinecone_env)
36
- )
37
- except Exception as e:
38
- print(f"Error creating Pinecone index: {e}")
39
- return "Failed to create Pinecone index."
40
-
41
- index = pc.Index(index_name)
42
-
43
- embeddings = []
44
- for i, row in df.iterrows():
45
- embedding = get_embedding(row['description'], openai_api_key)
46
- if embedding:
47
- embeddings.append((str(row['product_id']), embedding, {'product_name': row['product_name'], 'image_url': row['image_url']}))
48
-
49
- if embeddings:
50
- try:
51
- index.upsert(embeddings)
52
- except Exception as e:
53
- print(f"Error upserting embeddings to Pinecone: {e}")
54
- return "Failed to upsert embeddings."
55
-
56
- return "Product catalog processed and embeddings stored in Pinecone."
57
- except Exception as e:
58
- print(f"Error processing CSV file: {e}")
59
- return "Failed to process CSV file."
60
-
61
- # Recommendation logic
62
- def recommend_products(query: str, openai_api_key: str, pinecone_api_key: str, pinecone_env: str, top_k: int = 10) -> List[Tuple[str, str]]:
63
- query_embedding = get_embedding(query, openai_api_key)
64
-
65
- if not query_embedding:
66
- return []
67
-
68
- try:
69
- # Initialize Pinecone
70
- pc = Pinecone(api_key=pinecone_api_key)
71
- index = pc.Index("product-recommendations")
72
-
73
- results = index.query(vector=query_embedding, top_k=top_k, include_metadata=True)
74
- recommended_products = [(match['metadata']['image_url'], f"{match['metadata']['product_name']} (Score: {match['score']})") for match in results['matches']]
75
- return recommended_products
76
- except Exception as e:
77
- print(f"Error querying Pinecone: {e}")
78
- return []
79
-
80
- # Function to generate contextual message
81
- def generate_contextual_message(query: str, recommendations: List[Tuple[str, str]], openai_api_key: str, system_prompt: str) -> str:
82
- openai.api_key = openai_api_key
83
- product_names = [rec[1] for rec in recommendations]
84
- prompt = f"User query: {query}\nRecommended products: {', '.join(product_names)}\n{system_prompt}"
85
-
86
- try:
87
- response = openai.ChatCompletion.create(
88
- model="gpt-4", # or use "gpt-3.5-turbo" if preferred
89
- messages=[{"role": "system", "content": "You are a helpful assistant."},
90
- {"role": "user", "content": prompt}]
91
- )
92
- return response['choices'][0]['message']['content']
93
- except Exception as e:
94
- print(f"Error generating contextual message: {e}")
95
- return "Failed to generate contextual message."
96
-
97
- # Gradio interface
98
- def handle_file_upload(file, openai_api_key, pinecone_api_key, pinecone_env):
99
- return process_csv(file, openai_api_key, pinecone_api_key, pinecone_env)
100
-
101
- def display_recommendations(user_input, openai_api_key, pinecone_api_key, pinecone_env, system_prompt):
102
- recommendations = recommend_products(user_input, openai_api_key, pinecone_api_key, pinecone_env)
103
- contextual_message = generate_contextual_message(user_input, recommendations, openai_api_key, system_prompt)
104
- return recommendations, contextual_message
105
-
106
- # Function to update outputs
107
- def update_outputs(query_input, openai_api_key, pinecone_api_key, pinecone_env, chat_history, system_prompt):
108
- recommendations, contextual_message = display_recommendations(query_input, openai_api_key, pinecone_api_key, pinecone_env, system_prompt)
109
-
110
- # Update chat history
111
- new_chat_history = chat_history + [[query_input, contextual_message]]
112
-
113
- return recommendations, new_chat_history, gr.update(value="")
114
-
115
- css = """
116
- .lg.svelte-cmf5ev {background-color: #8A2BE2 !important;}
117
- .user.svelte-1pjfiar.svelte-1pjfiar.svelte-1pjfiar {padding: 7px !important;border-radius: 10px 10px 0px 10px;width: fit-content;background-color: #E6E6FA !important ;border-color:#E6E6FA !important}
118
- .bot.svelte-1pjfiar.svelte-1pjfiar.svelte-1pjfiar {padding: 7px !important;border-radius: 10px 10px 10px 0px;width : fit-content !important;border: 1.5px solid #9370DB !important;background: #FFFFFF 0% 0% no-repeat padding-box !important;box-shadow: 0px 3px 6px #0000001A !important;border: 2px solid #9370DB !important;}
119
- .primary.svelte-cmf5ev {box-shadow: 0px 3px 6px #0000001A !important;border: 2px solid #9370DB !important;background: #8A2BE2 !important;width: fit-content;}
120
- .primary.svelte-cmf5ev {color: white !important}
121
- textarea.scroll-hide.svelte-1f354aw {font-family:'Roboto','Arial',sans-serif;font-size:14px}
122
- label.svelte-1b6s6s { background: #9370DB 0% 0% no-repeat padding-box;color: white;width: 100%;}
123
- label.svelte-1b6s6s {background: #9370DB 0% 0% no-repeat padding-box;color: white;width: 100%;font-size:20px;font-family:'Roboto','Arial',sans-serif; border-radius: 0px 0px 10px 10px;}
124
- .wrapper.svelte-nab2ao{background-color : #F7F7F7 }
125
- svg.iconify.iconify--carbon{width:15px; height:15px}
126
- .thumbnail-item.svelte-fiatpe.svelte-fiatpe:hover {--ring-color: #9370DB !important;}
127
- """
128
-
129
- default_chat = [["Welcome! I'm your AI-powered product recommendation bot. Ask me anything about finding the perfect product for you.", "I'm here to assist you with any product-related inquiries. Let's find what you need!"]]
130
-
131
- # Create Gradio Interface
132
- def build_interface():
133
- with gr.Blocks(title="AI Smart Shopper", head="True", css=css) as interface:
134
- gr.Markdown("""<div style="text-align: center; font-weight: bold;"> <h1>AI Smart Shopper</h1> </div>""")
135
-
136
- with gr.Tab("API Keys"):
137
- openai_api_key_input = gr.Textbox(label="OpenAI API Key", type="password")
138
- pinecone_api_key_input = gr.Textbox(label="Pinecone API Key", type="password")
139
- pinecone_env_input = gr.Textbox(label="Pinecone Environment", placeholder="e.g., us-east-1")
140
- system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter a system prompt for the assistant...")
141
-
142
- with gr.Tab("Upload Catalog"):
143
- upload_button = gr.File(label="Upload CSV", type="filepath")
144
- output = gr.Textbox()
145
- upload_button.upload(handle_file_upload, inputs=[upload_button, openai_api_key_input, pinecone_api_key_input, pinecone_env_input], outputs=output)
146
-
147
- with gr.Tab("Get Recommendations"):
148
- with gr.Row():
149
- with gr.Column(scale=1):
150
- chatbot = gr.Chatbot(value=default_chat, label="Recommender Chatbot", show_label=True)
151
- query_input = gr.Textbox(label="Enter your product preference...", show_label=False, placeholder="Type your query here...")
152
- with gr.Row():
153
- with gr.Column(scale=1, min_width=150):
154
- recommend_button = gr.Button("Get Recommendations")
155
- with gr.Column(scale=1, min_width=150):
156
- clear_button = gr.Button("Clear")
157
- # Define state for chat history
158
- chat_history = gr.State([])
159
-
160
- # Define outputs
161
- with gr.Column(scale=1):
162
- recommendations_output = gr.Gallery(label="Recommendations For You", show_label=False, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto", scale=5)
163
-
164
- recommend_button.click(
165
- update_outputs,
166
- inputs=[query_input, openai_api_key_input, pinecone_api_key_input, pinecone_env_input, chat_history, system_prompt_input],
167
- outputs=[recommendations_output, chatbot, query_input]
168
- )
169
-
170
- clear_button.click(
171
- lambda: (gr.update(value=default_chat), gr.update(value=""), gr.update(value=[]), gr.update(value=[])),
172
- outputs=[chatbot, query_input, chat_history, recommendations_output]
173
- )
174
-
175
- return interface
176
-
177
- # Run the interface
178
- if __name__ == "__main__":
179
- interface = build_interface()
180
- interface.launch()