zayeem00 commited on
Commit
bda34a8
·
verified ·
1 Parent(s): 76a60e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -20
app.py CHANGED
@@ -4,7 +4,7 @@ import numpy as np
4
  import os
5
 
6
  # Configure the page to be mobile-friendly
7
- st.set_page_config(layout="centered", page_title="Restaurant Data Viewer")
8
 
9
  # URLs for the logos
10
  MAIN_LOGO_URL = "https://islamictrusthk.org/assets/images/top-logo.png"
@@ -72,12 +72,23 @@ def display_tiles(df, cols):
72
 
73
  # Function to detect the format and standardize the data
74
  def standardize_data(df):
75
- format_1_columns = {'Issued Date', 'Expiry Date', 'Cert. No', 'Company Name', 'Address', 'Region',
76
- 'Factory Type', 'Contact', 'Phone', 'E-mail', 'Status', 'Member Since'}
77
- format_2_columns = {'Name', 'Address', 'Tel', 'Cuisine', 'Expiry DateDD/MM/YY', 'Location', 'Restaurant Type',
78
- 'Website', 'Directions'}
79
 
80
  if format_1_columns.issubset(df.columns):
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  df = df.rename(columns={
82
  'Issued Date': 'Issued Date',
83
  'Expiry Date': 'Expiry Date',
@@ -92,20 +103,7 @@ def standardize_data(df):
92
  'Status': 'Status',
93
  'Member Since': 'Member Since'
94
  })
95
- required_columns = list(format_1_columns)
96
- elif format_2_columns.issubset(df.columns):
97
- df = df.rename(columns={
98
- 'Name': 'Company Name',
99
- 'Address': 'Address',
100
- 'Tel': 'Phone',
101
- 'Cuisine': 'Factory Type',
102
- 'Expiry DateDD/MM/YY': 'Expiry Date',
103
- 'Location': 'Region',
104
- 'Restaurant Type': 'Factory Type',
105
- 'Website': 'Website',
106
- 'Directions': 'Directions'
107
- })
108
- required_columns = list(format_1_columns) # Use the same required columns for consistency
109
  else:
110
  st.error("Unsupported file format")
111
  return None, []
@@ -226,7 +224,7 @@ else:
226
  company_name_filter = st.text_input("Company Name contains")
227
  with col2:
228
  # Filter by Location
229
- location_filter = st.multiselect("Location", df['Region'].drop_duplicates())
230
  with col3:
231
  # Filter by Restaurant Type
232
  restaurant_type_filter = st.multiselect("Factory Type", df['Factory Type'].drop_duplicates())
 
4
  import os
5
 
6
  # Configure the page to be mobile-friendly
7
+ st.set_page_config(layout="centered", page_title="Hong Kong Halal Restaurant Data Viewer")
8
 
9
  # URLs for the logos
10
  MAIN_LOGO_URL = "https://islamictrusthk.org/assets/images/top-logo.png"
 
72
 
73
  # Function to detect the format and standardize the data
74
  def standardize_data(df):
75
+ format_1_columns = {'Name', 'Address', 'Tel', 'Cuisine', 'Expiry Date', 'Location', 'Restaurant Type', 'Website', 'Directions'}
76
+ format_2_columns = {'Issued Date', 'Expiry Date', 'Cert. No', 'Company Name', 'Address', 'Region', 'Factory Type', 'Contact', 'Phone', 'E-mail', 'Status', 'Member Since'}
 
 
77
 
78
  if format_1_columns.issubset(df.columns):
79
+ df = df.rename(columns={
80
+ 'Name': 'Company Name',
81
+ 'Address': 'Address',
82
+ 'Tel': 'Phone',
83
+ 'Cuisine': 'Factory Type',
84
+ 'Expiry Date': 'Expiry Date',
85
+ 'Location': 'Region',
86
+ 'Restaurant Type': 'Factory Type',
87
+ 'Website': 'Website',
88
+ 'Directions': 'Directions'
89
+ })
90
+ required_columns = ['Company Name', 'Address', 'Phone', 'Factory Type', 'Expiry Date', 'Region', 'Website', 'Directions']
91
+ elif format_2_columns.issubset(df.columns):
92
  df = df.rename(columns={
93
  'Issued Date': 'Issued Date',
94
  'Expiry Date': 'Expiry Date',
 
103
  'Status': 'Status',
104
  'Member Since': 'Member Since'
105
  })
106
+ required_columns = ['Issued Date', 'Expiry Date', 'Cert No', 'Company Name', 'Address', 'Region', 'Factory Type', 'Contact', 'Phone', 'E-mail', 'Status', 'Member Since']
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  else:
108
  st.error("Unsupported file format")
109
  return None, []
 
224
  company_name_filter = st.text_input("Company Name contains")
225
  with col2:
226
  # Filter by Location
227
+ location_filter = st.multiselect("Region", df['Region'].drop_duplicates())
228
  with col3:
229
  # Filter by Restaurant Type
230
  restaurant_type_filter = st.multiselect("Factory Type", df['Factory Type'].drop_duplicates())