zehui127 commited on
Commit
77fb246
·
1 Parent(s): 166d58b
Files changed (2) hide show
  1. app.py +58 -49
  2. requirements.txt +6 -1
app.py CHANGED
@@ -1,64 +1,73 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ import re
3
+ import torch
4
  import gradio as gr
5
+ import numpy as np
6
+ import sklearn
7
+ from tqdm import tqdm
8
+ from datasets import load_dataset, DatasetDict
9
+ from transformers import AutoModelForCausalLM, AutoTokenizer
10
 
11
+ # Automatically detect GPU or use CPU
12
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
13
 
14
+ # Default model path
15
+ model_tokenizer_path = "zehui127/Omni-DNA-Multitask"
16
 
17
+ # Load tokenizer and model with trusted remote code
18
+ tokenizer = AutoTokenizer.from_pretrained(model_tokenizer_path, trust_remote_code=True)
19
+ model = AutoModelForCausalLM.from_pretrained(model_tokenizer_path, trust_remote_code=True).to(device)
 
 
 
 
 
 
20
 
21
+ # List of available tasks
22
+ tasks = ['H3', 'H4', 'H3K9ac', 'H3K14ac', 'H4ac', 'H3K4me1', 'H3K4me2', 'H3K4me3', 'H3K36me3', 'H3K79me3']
 
 
 
23
 
24
+ def preprocess_response(response, mask_token="[MASK]"):
25
+ """Extracts the response after the [MASK] token."""
26
+ if mask_token in response:
27
+ response = response.split(mask_token, 1)[1]
28
+ response = re.sub(r'^[\sATGC]+', '', response)
29
+ return response
30
 
31
+ def generate(dna_sequence, task_type, sample_num=1):
32
+ """
33
+ Generates a response based on the DNA sequence and selected task.
34
 
35
+ Args:
36
+ dna_sequence (str): The input DNA sequence.
37
+ task_type (str): The selected task type.
38
+ sample_num (int): Number of samples for the generation process.
 
 
 
 
39
 
40
+ Returns:
41
+ str: Predicted function label.
42
+ """
43
+ dna_sequence = dna_sequence + task_type +"[MASK]"
44
+ tokenized_message = tokenizer(
45
+ [dna_sequence], return_tensors='pt', return_token_type_ids=False, add_special_tokens=True
46
+ ).to(device)
47
 
48
+ response = model.generate(**tokenized_message, max_new_tokens=sample_num, do_sample=False)
49
+ reply = tokenizer.batch_decode(response, skip_special_tokens=False)[0].replace(" ", "")
50
 
51
+ return extract_label(reply, task_type)
52
+
53
+ def extract_label(message, task_type):
54
+ """Extracts the prediction label from the model's response."""
55
+ task_type = '[MASK]'
56
+ answer = message.split(task_type)[1]
57
+ match = re.search(r'\d+', answer)
58
+ return match.group() if match else "No valid prediction"
59
+
60
+ # Gradio interface
61
+ interface = gr.Interface(
62
+ fn=generate,
63
+ inputs=[
64
+ gr.Textbox(label="Input DNA Sequence", placeholder="Enter a DNA sequence"),
65
+ gr.Dropdown(choices=tasks, label="Select Task Type"),
 
66
  ],
67
+ outputs=gr.Textbox(label="Predicted Function"),
68
+ title="Omni-DNA Multitask Prediction",
69
+ description="Select a DNA-related task and input a sequence to generate function predictions.",
70
  )
71
 
 
72
  if __name__ == "__main__":
73
+ interface.launch()
requirements.txt CHANGED
@@ -1 +1,6 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ torch
3
+ transformers
4
+ gradio
5
+ datasets
6
+ ai2-olmo