Update src/recommendationSystem/utils/common.py
Browse files- src/recommendationSystem/utils/common.py +112 -112
src/recommendationSystem/utils/common.py
CHANGED
@@ -1,112 +1,112 @@
|
|
1 |
-
# --------------------------------- CUSTOM EXCEPTION CLASS --------------------------------------------
|
2 |
-
|
3 |
-
# Importing Libraries
|
4 |
-
import sys
|
5 |
-
|
6 |
-
|
7 |
-
# Defining structure of exception message
|
8 |
-
def error_message_detail(error:Exception,error_detail:sys):
|
9 |
-
_,_,exec_tb = error_detail.exc_info()
|
10 |
-
file_name = exec_tb.tb_frame.f_code.co_filename
|
11 |
-
line_number = exec_tb.tb_lineno
|
12 |
-
error_message = f"Error occured in python script name [{file_name}] " \
|
13 |
-
f"line number [{line_number}] error message [{error}]"
|
14 |
-
return error_message
|
15 |
-
|
16 |
-
# Getting the exception message from sys
|
17 |
-
class CustomException(Exception):
|
18 |
-
def __init__(self, error_message:Exception, error_detail:sys):
|
19 |
-
super().__init__(str(error_message))
|
20 |
-
self.error_message = error_message_detail(error_message,error_detail=error_detail)
|
21 |
-
|
22 |
-
def __str__(self):
|
23 |
-
return self.error_message
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
# --------------------------------- PREPROCESSING THE TEXT IN THE DATAFRAME --------------------------------------------
|
30 |
-
|
31 |
-
# Importing Libraries
|
32 |
-
from nltk.stem.porter import PorterStemmer
|
33 |
-
from sklearn.feature_extraction.text import CountVectorizer
|
34 |
-
from sklearn.metrics.pairwise import cosine_similarity
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
def removing_blank_lines(text):
|
39 |
-
return text.replace('\n'," ")
|
40 |
-
|
41 |
-
def removing_pre_suff_ix(text):
|
42 |
-
y = []
|
43 |
-
|
44 |
-
for i in text.split():
|
45 |
-
y.append(PorterStemmer().stem(i))
|
46 |
-
|
47 |
-
return " ".join(y)
|
48 |
-
|
49 |
-
def converting_into_vectors(text):
|
50 |
-
vec = CountVectorizer(max_features=5000,stop_words='english').fit_transform(text).toarray()
|
51 |
-
return vec
|
52 |
-
|
53 |
-
def finding_similarity(vec):
|
54 |
-
similarity = cosine_similarity(vec)
|
55 |
-
return similarity
|
56 |
-
|
57 |
-
# --------------------------------- SAVING FILES --------------------------------------------
|
58 |
-
|
59 |
-
import os
|
60 |
-
import dill
|
61 |
-
|
62 |
-
from recommendationSystem.logging import logger
|
63 |
-
|
64 |
-
|
65 |
-
def save_object(file_path,obj):
|
66 |
-
try:
|
67 |
-
dir_path = os.path.dirname(file_path)
|
68 |
-
os.makedirs(dir_path,exist_ok=True)
|
69 |
-
|
70 |
-
with open(file_path,'wb') as file_obj:
|
71 |
-
dill.dump(obj,file_obj)
|
72 |
-
|
73 |
-
except Exception as e:
|
74 |
-
raise CustomException(e,sys)
|
75 |
-
|
76 |
-
|
77 |
-
# --------------------------------- Prediction File --------------------------------------------
|
78 |
-
|
79 |
-
import numpy as np
|
80 |
-
|
81 |
-
def recommend(data,matrix,anime):
|
82 |
-
anime_index = data[data.title == anime].index[0]
|
83 |
-
distances = np.around(matrix[anime_index],2)
|
84 |
-
anime_list = sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[0:10]
|
85 |
-
|
86 |
-
recommended_anime = []
|
87 |
-
recommended_anime_poster = []
|
88 |
-
recommended_anime_link = []
|
89 |
-
recommended_similarity_score = []
|
90 |
-
|
91 |
-
for i in anime_list:
|
92 |
-
# anime
|
93 |
-
recommended_anime.append(data.iloc[i[0]].title)
|
94 |
-
# posters
|
95 |
-
recommended_anime_poster.append(data.iloc[i[0]].image)
|
96 |
-
# links
|
97 |
-
recommended_anime_link.append(data.iloc[i[0]].links)
|
98 |
-
# score
|
99 |
-
recommended_similarity_score.append(f'{np.around(i[1]*100,2)} %')
|
100 |
-
return recommended_anime, recommended_anime_poster, recommended_anime_link, recommended_similarity_score
|
101 |
-
|
102 |
-
# --------------------------------- Find Story of the anime --------------------------------------------
|
103 |
-
|
104 |
-
import pandas as pd
|
105 |
-
|
106 |
-
def find_anime(label):
|
107 |
-
dataframe_path = os.path.join("artifact","data.csv")
|
108 |
-
df = pd.read_csv(dataframe_path)
|
109 |
-
story = '\n'.join(df[df.name == label].sypnopsis.to_list())
|
110 |
-
return story
|
111 |
-
|
112 |
-
|
|
|
1 |
+
# --------------------------------- CUSTOM EXCEPTION CLASS --------------------------------------------
|
2 |
+
|
3 |
+
# Importing Libraries
|
4 |
+
import sys
|
5 |
+
|
6 |
+
|
7 |
+
# Defining structure of exception message
|
8 |
+
def error_message_detail(error:Exception,error_detail:sys):
|
9 |
+
_,_,exec_tb = error_detail.exc_info()
|
10 |
+
file_name = exec_tb.tb_frame.f_code.co_filename
|
11 |
+
line_number = exec_tb.tb_lineno
|
12 |
+
error_message = f"Error occured in python script name [{file_name}] " \
|
13 |
+
f"line number [{line_number}] error message [{error}]"
|
14 |
+
return error_message
|
15 |
+
|
16 |
+
# Getting the exception message from sys
|
17 |
+
class CustomException(Exception):
|
18 |
+
def __init__(self, error_message:Exception, error_detail:sys):
|
19 |
+
super().__init__(str(error_message))
|
20 |
+
self.error_message = error_message_detail(error_message,error_detail=error_detail)
|
21 |
+
|
22 |
+
def __str__(self):
|
23 |
+
return self.error_message
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
# --------------------------------- PREPROCESSING THE TEXT IN THE DATAFRAME --------------------------------------------
|
30 |
+
|
31 |
+
# Importing Libraries
|
32 |
+
from nltk.stem.porter import PorterStemmer
|
33 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
34 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
def removing_blank_lines(text):
|
39 |
+
return text.replace('\n'," ")
|
40 |
+
|
41 |
+
def removing_pre_suff_ix(text):
|
42 |
+
y = []
|
43 |
+
|
44 |
+
for i in text.split():
|
45 |
+
y.append(PorterStemmer().stem(i))
|
46 |
+
|
47 |
+
return " ".join(y)
|
48 |
+
|
49 |
+
def converting_into_vectors(text):
|
50 |
+
vec = CountVectorizer(max_features=5000,stop_words='english').fit_transform(text).toarray()
|
51 |
+
return vec
|
52 |
+
|
53 |
+
def finding_similarity(vec):
|
54 |
+
similarity = cosine_similarity(vec)
|
55 |
+
return similarity
|
56 |
+
|
57 |
+
# --------------------------------- SAVING FILES --------------------------------------------
|
58 |
+
|
59 |
+
import os
|
60 |
+
import dill
|
61 |
+
|
62 |
+
from recommendationSystem.logging import logger
|
63 |
+
|
64 |
+
|
65 |
+
def save_object(file_path,obj):
|
66 |
+
try:
|
67 |
+
dir_path = os.path.dirname(file_path)
|
68 |
+
os.makedirs(dir_path,exist_ok=True)
|
69 |
+
|
70 |
+
with open(file_path,'wb') as file_obj:
|
71 |
+
dill.dump(obj,file_obj)
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
raise CustomException(e,sys)
|
75 |
+
|
76 |
+
|
77 |
+
# --------------------------------- Prediction File --------------------------------------------
|
78 |
+
|
79 |
+
import numpy as np
|
80 |
+
|
81 |
+
def recommend(data,matrix,anime):
|
82 |
+
anime_index = data[data.title == anime].index[0]
|
83 |
+
distances = np.around(matrix[anime_index],2)
|
84 |
+
anime_list = sorted(list(enumerate(distances)),reverse=True,key=lambda x:x[1])[0:10]
|
85 |
+
|
86 |
+
recommended_anime = []
|
87 |
+
recommended_anime_poster = []
|
88 |
+
recommended_anime_link = []
|
89 |
+
recommended_similarity_score = []
|
90 |
+
|
91 |
+
for i in anime_list:
|
92 |
+
# anime
|
93 |
+
recommended_anime.append(data.iloc[i[0]].title)
|
94 |
+
# posters
|
95 |
+
recommended_anime_poster.append(data.iloc[i[0]].image)
|
96 |
+
# links
|
97 |
+
recommended_anime_link.append(data.iloc[i[0]].links)
|
98 |
+
# score
|
99 |
+
recommended_similarity_score.append(f'{np.around(i[1]*100,2)} %')
|
100 |
+
return recommended_anime, recommended_anime_poster, recommended_anime_link, recommended_similarity_score
|
101 |
+
|
102 |
+
# --------------------------------- Find Story of the anime --------------------------------------------
|
103 |
+
|
104 |
+
import pandas as pd
|
105 |
+
|
106 |
+
def find_anime(label):
|
107 |
+
dataframe_path = os.path.join("/tmp/artifact","data.csv")
|
108 |
+
df = pd.read_csv(dataframe_path)
|
109 |
+
story = '\n'.join(df[df.name == label].sypnopsis.to_list())
|
110 |
+
return story
|
111 |
+
|
112 |
+
|