import streamlit as st from predict_trial import return_data @st.cache_resource def fetch_transformed_data(): with st.spinner("Started training the model...",show_time=True): data_path, matrix_path = return_data().predict() return data_path,matrix_path st.success("Deployment complete, Successfully created the system!") #----------------------------------------------------------------------------- from recommendationSystem.utils.common import recommend,find_anime @st.cache_resource def anime_info(anime_name,anime_data,similarity_matrix): if anime_name is not None: st.write('\n\n\n') name, posters, link, score = recommend(data=anime_data,matrix=similarity_matrix,anime=anime_name) _, col, _ = st.columns(3) with col: st.image(posters[0]) st.text(f"{find_anime(anime_name)}") st.write(f'Similarity Score : {score[0]}') st.write('') st.link_button("Know More", link[0],use_container_width=True) for i in range(1,9,3): col1, col2, col3 = st.columns(3) with col1: st.image(posters[i]) st.write(name[i]) st.write(f'Similarity Score : {score[i]}') st.write('') st.link_button("Know More", link[i],use_container_width=True) with col2: st.image(posters[i+1]) st.write(name[i+1]) st.write(f'Similarity Score : {score[i+1]}') st.write('') st.link_button("Know More", link[i+1],use_container_width=True) with col3: st.image(posters[i+2]) st.write(name[i+2]) st.write(f'Similarity Score : {score[i+2]}') st.write('') st.link_button("Know More", link[i+2],use_container_width=True) st.write('\n\n\n')