File size: 1,611 Bytes
221bb68
e0988c7
5edfc32
 
4a07697
8fe6fbe
5edfc32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cc0f0
13c9d42
5edfc32
 
 
 
 
 
221bb68
 
 
 
5edfc32
221bb68
 
5edfc32
221bb68
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import gradio as gr
import os
import requests

API_TOKEN =  os.environ.get("HF_HUB_API_TOKEN")  # 或直接写 token
API_URL = "https://api-inference.huggingface.co/models/Qwen/Qwen3-8B-Base"

headers = {
    "Authorization": f"Bearer {API_TOKEN}",
    "Content-Type": "application/json",
}

def respond(message, history, system_message, max_tokens, temperature, top_p):
    payload = {
        "inputs": {
            "past_user_inputs": [m[0] for m in history],
            "generated_responses": [m[1] for m in history],
            "text": message
        },
        "parameters": {
            "temperature": temperature,
            "max_new_tokens": max_tokens,
            "top_p": top_p
        }
    }

    try:
        response = requests.post(API_URL, headers=headers, json=payload)
        if response.status_code != 200:
            return f"[HTTP {response.status_code}] {response.text}"
        result = response.json()
        if isinstance(result, dict) and result.get("error"):
            return f"[ERROR] {result['error']}"
        return result[0]["generated_text"]
    except Exception as e:
        return f"[Exception] {str(e)}"

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
    ],
)

if __name__ == "__main__":
    demo.launch()