dumb down demo
Browse files
app.py
CHANGED
@@ -12,12 +12,13 @@ import torch
|
|
12 |
import tempfile
|
13 |
import gradio
|
14 |
import shutil
|
|
|
15 |
|
16 |
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
|
17 |
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa
|
18 |
sys.path.insert(0, MASt3R_REPO_PATH) # noqa
|
19 |
|
20 |
-
from mast3r.demo import get_reconstructed_scene
|
21 |
from mast3r.model import AsymmetricMASt3R
|
22 |
from mast3r.utils.misc import hash_md5
|
23 |
|
@@ -39,133 +40,74 @@ silent = True
|
|
39 |
gradio_delete_cache = 7200
|
40 |
|
41 |
|
42 |
-
|
43 |
-
def
|
44 |
-
|
45 |
-
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
|
46 |
-
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw):
|
47 |
-
return get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, current_scene_state,
|
48 |
-
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
|
49 |
-
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
|
50 |
-
win_cyclic, refid, TSDF_thresh, shared_intrinsics, **kw)
|
51 |
-
|
52 |
-
|
53 |
-
@spaces.GPU()
|
54 |
-
def local_get_3D_model_from_scene(scene_state, min_conf_thr=2, as_pointcloud=False, mask_sky=False,
|
55 |
-
clean_depth=False, transparent_cams=False, cam_size=0.05, TSDF_thresh=0):
|
56 |
-
return get_3D_model_from_scene(silent, scene_state, min_conf_thr, as_pointcloud, mask_sky,
|
57 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh)
|
58 |
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
recon_fun = local_get_reconstructed_scene
|
61 |
-
model_from_scene_fun = local_get_3D_model_from_scene
|
62 |
|
63 |
-
|
64 |
-
def
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
else:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
|
77 |
with gradio.Column():
|
78 |
inputfiles = gradio.File(file_count="multiple")
|
79 |
with gradio.Row():
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
niter1 = gradio.Number(value=500, precision=0, minimum=0, maximum=10_000,
|
84 |
-
label="num_iterations", info="For coarse alignment!")
|
85 |
-
lr2 = gradio.Slider(label="Fine LR", value=0.014, minimum=0.005, maximum=0.05, step=0.001)
|
86 |
-
niter2 = gradio.Number(value=200, precision=0, minimum=0, maximum=100_000,
|
87 |
-
label="num_iterations", info="For refinement!")
|
88 |
-
optim_level = gradio.Dropdown(["coarse", "refine", "refine+depth"],
|
89 |
-
value='refine', label="OptLevel",
|
90 |
-
info="Optimization level")
|
91 |
-
with gradio.Row():
|
92 |
-
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5.,
|
93 |
-
minimum=0., maximum=30., step=0.1,
|
94 |
-
info="Before Fallback to Regr3D!")
|
95 |
-
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
|
96 |
-
info="Only optimize one set of intrinsics for all views")
|
97 |
-
scenegraph_type = gradio.Dropdown([("complete: all possible image pairs", "complete"),
|
98 |
-
("swin: sliding window", "swin"),
|
99 |
-
("logwin: sliding window with long range", "logwin"),
|
100 |
-
("oneref: match one image with all", "oneref")],
|
101 |
-
value='complete', label="Scenegraph",
|
102 |
-
info="Define how to make pairs",
|
103 |
-
interactive=True)
|
104 |
-
with gradio.Column(visible=False) as win_col:
|
105 |
-
winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
|
106 |
-
minimum=1, maximum=1, step=1)
|
107 |
-
win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence")
|
108 |
-
refid = gradio.Slider(label="Scene Graph: Id", value=0,
|
109 |
-
minimum=0, maximum=0, step=1, visible=False)
|
110 |
-
run_btn = gradio.Button("Run")
|
111 |
-
|
112 |
-
with gradio.Row():
|
113 |
# adjust the confidence threshold
|
114 |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
|
115 |
# adjust the camera size in the output pointcloud
|
116 |
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
|
117 |
-
TSDF_thresh = gradio.Slider(label="TSDF Threshold", value=0., minimum=0., maximum=1., step=0.01)
|
118 |
with gradio.Row():
|
119 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")
|
124 |
-
|
125 |
outmodel = gradio.Model3D()
|
126 |
|
127 |
# events
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
win_cyclic.change(set_scenegraph_options,
|
135 |
-
inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
|
136 |
-
outputs=[win_col, winsize, win_cyclic, refid])
|
137 |
-
run_btn.click(fn=recon_fun,
|
138 |
-
inputs=[scene, inputfiles, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
|
139 |
-
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size,
|
140 |
-
scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh, shared_intrinsics],
|
141 |
-
outputs=[scene, outmodel])
|
142 |
-
min_conf_thr.release(fn=model_from_scene_fun,
|
143 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
144 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
145 |
-
outputs=outmodel)
|
146 |
-
cam_size.change(fn=model_from_scene_fun,
|
147 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
148 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
149 |
-
outputs=outmodel)
|
150 |
-
TSDF_thresh.change(fn=model_from_scene_fun,
|
151 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
152 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
153 |
-
outputs=outmodel)
|
154 |
-
as_pointcloud.change(fn=model_from_scene_fun,
|
155 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
156 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
157 |
-
outputs=outmodel)
|
158 |
-
mask_sky.change(fn=model_from_scene_fun,
|
159 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
160 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
161 |
-
outputs=outmodel)
|
162 |
-
clean_depth.change(fn=model_from_scene_fun,
|
163 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
164 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
165 |
-
outputs=outmodel)
|
166 |
-
transparent_cams.change(model_from_scene_fun,
|
167 |
-
inputs=[scene, min_conf_thr, as_pointcloud, mask_sky,
|
168 |
-
clean_depth, transparent_cams, cam_size, TSDF_thresh],
|
169 |
-
outputs=outmodel)
|
170 |
demo.launch(share=None, server_name=None, server_port=None)
|
171 |
shutil.rmtree(tmpdirname)
|
|
|
12 |
import tempfile
|
13 |
import gradio
|
14 |
import shutil
|
15 |
+
import math
|
16 |
|
17 |
HERE_PATH = path.normpath(path.dirname(__file__)) # noqa
|
18 |
MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa
|
19 |
sys.path.insert(0, MASt3R_REPO_PATH) # noqa
|
20 |
|
21 |
+
from mast3r.demo import get_reconstructed_scene
|
22 |
from mast3r.model import AsymmetricMASt3R
|
23 |
from mast3r.utils.misc import hash_md5
|
24 |
|
|
|
40 |
gradio_delete_cache = 7200
|
41 |
|
42 |
|
43 |
+
class FileState:
|
44 |
+
def __init__(self, outfile_name=None):
|
45 |
+
self.outfile_name = outfile_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def __del__(self):
|
48 |
+
if self.outfile_name is not None and os.path.isfile(self.outfile_name):
|
49 |
+
os.remove(self.outfile_name)
|
50 |
+
self.outfile_name = None
|
51 |
|
|
|
|
|
52 |
|
53 |
+
@spaces.GPU()
|
54 |
+
def local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr,
|
55 |
+
as_pointcloud, cam_size,
|
56 |
+
shared_intrinsics, **kw):
|
57 |
+
lr1 = 0.07
|
58 |
+
niter1 = 500
|
59 |
+
lr2 = 0.014
|
60 |
+
niter2 = 200
|
61 |
+
optim_level = 'refine'
|
62 |
+
mask_sky, clean_depth, transparent_cams = False, True, False
|
63 |
+
if len(filelist) < 5:
|
64 |
+
scenegraph_type = 'complete'
|
65 |
+
winsize = 1
|
66 |
else:
|
67 |
+
scenegraph_type = 'logwin'
|
68 |
+
half_size = math.ceil((len(filelist) - 1) / 2)
|
69 |
+
max_winsize = max(1, math.ceil(math.log(half_size, 2)))
|
70 |
+
winsize = min(5, max_winsize)
|
71 |
+
refid = 0
|
72 |
+
win_cyclic = False
|
73 |
+
scene_state, outfile = get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, None,
|
74 |
+
filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr,
|
75 |
+
as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize,
|
76 |
+
win_cyclic, refid, TSDF_thresh=0, shared_intrinsics=shared_intrinsics, **kw)
|
77 |
+
filestate = FileState(scene_state.outfile_name)
|
78 |
+
scene_state.outfile_name = None
|
79 |
+
del scene_state
|
80 |
+
return filestate, outfile
|
81 |
+
|
82 |
+
|
83 |
+
css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
|
84 |
+
title = "MASt3R Demo"
|
85 |
+
with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo:
|
86 |
+
filestate = gradio.State(None)
|
87 |
gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
|
88 |
with gradio.Column():
|
89 |
inputfiles = gradio.File(file_count="multiple")
|
90 |
with gradio.Row():
|
91 |
+
matching_conf_thr = gradio.Slider(label="Matching Confidence Thr", value=5.,
|
92 |
+
minimum=0., maximum=30., step=0.1,
|
93 |
+
info="Before Fallback to Regr3D!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
# adjust the confidence threshold
|
95 |
min_conf_thr = gradio.Slider(label="min_conf_thr", value=1.5, minimum=0.0, maximum=10, step=0.1)
|
96 |
# adjust the camera size in the output pointcloud
|
97 |
cam_size = gradio.Slider(label="cam_size", value=0.2, minimum=0.001, maximum=1.0, step=0.001)
|
|
|
98 |
with gradio.Row():
|
99 |
as_pointcloud = gradio.Checkbox(value=True, label="As pointcloud")
|
100 |
+
shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
|
101 |
+
info="Only optimize one set of intrinsics for all views")
|
102 |
+
run_btn = gradio.Button("Run")
|
|
|
|
|
103 |
outmodel = gradio.Model3D()
|
104 |
|
105 |
# events
|
106 |
+
run_btn.click(fn=local_get_reconstructed_scene,
|
107 |
+
inputs=[inputfiles, min_conf_thr, matching_conf_thr,
|
108 |
+
as_pointcloud,
|
109 |
+
cam_size, shared_intrinsics],
|
110 |
+
outputs=[filestate, outmodel])
|
111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
demo.launch(share=None, server_name=None, server_port=None)
|
113 |
shutil.rmtree(tmpdirname)
|